UNCLASSIFIED

AD NUMBER AD238430 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution: Further dissemination only as directed by U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, May 1960, or higher DoD authority. **AUTHORITY** USAEWES ltr, 28 Jun 1966

Reproduced

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY COBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR FERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNGLASSIFIED

CRATERING FROM HIGH EXPLOSIVE CHARGES

COMPENDIUM OF CRATER DATA

TECHNICAL REPORT NO. 2-547

Report 1

May 1960

U. S. Army Engineer Waterways Experiment Station
CORPS OF ENGINEERS
Vicksburg, Mississippi

CRATERING FROM HIGH EXPLOSIVE CHARGES

COMPENDIUM OF CRATER DATA

TECHNICAL REPORT NO. 2-547

Report 1

May 1960

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKBBURG. MISS

PREFACE

This report is the first of two reports on the general subject, cratering from high explosive charges; it compiles in narrative and tabular form all available HE cratering data from test series in various media. The second report will analyze empirically the results reported herein. The study was conducted for the Office, Chief of Engineers, Department of the Army, as a part of Research and Development Subproject 8-12-95-420, "Nuclear Weapons Effects on Structures, Terrain, and Waterways" (Unclassified). It was accomplished during the period October 1957 through June 1959 by personnel of the Special Investigations Section, Hydraulics Division, U. S. Army Engineer Waterways Experiment Station, under the general supervision of Messrs. E. P. Fortson, Jr., and F. R. Brown. This report was prepared by SP-5 R. A. Sager, SP-4 C. W. Denzel, and Mr. W. B. Tiffany under the direct supervision of Messrs. G. L. Arbuthnot, Jr., and J. N. Strange."

The comments and suggestions of Cdr. V. J. Christensen, LCdr. B. S. Merrill, and Maj. E. H. Kleist as to the syle and arrangement of the material are gratefully acknowledged.

Col. Edmund H. Lang, CE, was Director of the Waterways Experiment Station during the preparation of this report. Mr. J. B. Tiffany was Technical Director.

CONTENTS

$oxed{1}$	Pag
PREFACE	iii
NOTATIONS	vii
SUMMARY	ix
PART I: INTRODUCTION	. 1
PART II: THE LITERATURE SEARCH AND DATA TABULATION PROCEDURES	3
Literature	3 3 7
PART III: CRATER D_MENSIONS	9
Methods of Measuring the Various Crater Dimensions	9 10
PART IV: PROPERTIES OF THE VARIOUS MEDIA CRATERED	13
Writ Clay Moist Clay Dry Clay Wet Sand Dry-to-Moist Sand Loess Various Soils Frozen Ground Rock Ice Snow	13 15 16 17 19 20 21 21 23 26 26 26
TABLES 1-10	20
APPENDIX A: ADDITIONAL CRATERING DATA	A 1
Properties of the Various Media Cratered	Al A2

NOTATIONS

- d Apparent crater depth, ft
- True crater depth, ft
- D, Horizontal diameter of camouflet, ft
- D. Vertical diameter of camouflet, ft
- h Average crater lip height, ft
- r Average apparent crater radius, ft
- r Average radius of rupture of camouflet, ft
- rt Average true crater radius, Mt
- V Volume of apparent crater, cu ft
- V Volume of camouflet, cu ft
- V, Volume of true crater, cu ft
- W TNT equivalent charge weight, 1b
- Z Depth of burial of charge, ft
- $\alpha_{\rm a}$ Average apparent crater angle, degrees (see fig. 2)
- σ_t Average true crater angle, degrees (see fig. 2)
- Reduced charge position, $Z/W^{1/3}$, ft/1b^{1/3}

SUMMARY

Any effort to perform an all-inclusive analysis of HE cratering experiments has, in the past, met with serious difficulties because of the intensive and laborious literature search necessary for the accumulation of pertinent data. This report was prepared in order to summarize all HE cratering data in a single report and thus facilitate future reference and correlation attempts. A second report will analyze the results presented herein.

The data compiled herein are presented in narrative and tabular form and have been grouped according to data obtained from cratering in soils (which includes clays, loess, silt, sand, etc.), frozen ground, rock, ice, and snow. Craters resulting from underwater shots are not considered in this report.

CRATERING FROM HIGH EXPLOSIVE CHARGES

COMPENDIUM OF CRATER DATA

PART I: INTRODUCTION

- l. Any future application of large HE and nuclear explosions will doubtlessly involve near-surface or below-surface detonations which will produce craters of more or less conventional shape. The military applications of cratering are more or less obvious--e.g., to damage or destroy underground installations, to create parriers in various situations, etc.; however, the cratering process is now being studied in some detail for prospective civil applications to accomplish a variety of tasks. Whether the application be civil or military, it is certainly desirable to be able to predict with the greatest possible accuracy every phase of the cratering process, but particularly to be able to predict the size and shape of the crater formed.
- 2. In the past, any effort to analyze and correlate cratering data from HE explosions has met with considerable difficulty. Most of these data are presented in countless reports where they are treated as primary information or simply reported as incidental phenomena. By compiling and properly tabulating all of the HE cratering data under one cover, a substantial contribution will be made to future efforts at specific or comparative analyses.
- 3. Therefore, all pertinent HE cratering data, located during an exhaustive literature search, have been included in tables 1-6 of the main body of this report (covering crater and camouflet measurements in soil, and crater measurements in frozen ground rock, ice, and snow) and table Alm of the appendix (giving additional crater measurements in soil). Every effort was made during the search to obtain every report published which contained cratering data; however, in an undertaking of this scope, it is recognized that some data were probably overlooked. Persons having access to cratering data not included in this peport are requested to transmit these data in tabular form (similar to the fermat of tables 1-6) along with as detailed a description of the medical possible to: Director, U. S. Army

 μ vo

sippi, ATTN: Chief, Special Investigations Section. Additional data so received will be published as appendices to this report. A second report on this same general subject, namely, cratering from high explosive charges, will analyze empirically the results presented herein.

4. Cratering data from underwater shots have been purposely omitted.

Literature

- 5. As stated in Part I, the Waterways Experiment Station (WES) has conducted, over a period of several years, an exhaustive literature search of all available reports, papers, and personal notes (some of which were, at the time received, unpublished) that contained ratering data. From this intensive survey, a bibliography has been prepared and is presented at the end of the narrative portion of this report.
- 6. The cratering data tabulated herein were extracted almost entirely from the formal reports listed in the bibliography; a small amount was obtained from shot records and personal notes describing various test results wherein cratering was a secondary measurement. A few of the reports listed in the bibliography did not contribute per se to the wealth of data tabulated; however, these particular reports were included since they supplement reports from which cratering data were extracted. For example, references 9-12 and 16 supplement the data from the Engineering Research Associates' (ERA) Underground Explosion test program, references 13-15. Similarly, three reports (33, 36, and 54) supplement the data from the Project Mole scries, reference 32; one report (45) supplements the data obtained from the Panama Canal series, references 46-50; five reports (24, 25, 28, 30, and 31) include information that may assist in analyzing these data; four reports (3, 18, 29, and 34) present limited compendiums of cratering data; and two reports (26 and 27) include descriptions of the soil at several test sites from which cratering data were obtained.

Grouping of Data

7. Various crater measurements were obtained from more than 1800 shots. Arrangement of these data into similar or kindred groups was accomplished in order to assist users in attempts to analyze the data. Grouping of the data was accomplished by considering the following the parameters in the order named: type of media cratered, shape of charge, position of charge, and weight of charge.

Media grouping

8. Based upon the grouping procedure just described, the following tabulation shows the media groupings under which the data are tabulated:

Table	*	Medi a	1 -
1 2 3 4		Soil (camouflet measure Frozen ground Rock Ice Snow	ements)

Soil-type grouping

9. Crater and camouflet measurements in soils (tables 1 and 2, respectively) were subdivided into various soil types and further grouped to describe qualitatively the condition of the soil as to moisture content. The first of these groupings (soil types) was easily determined using accepted soil-classification procedures. The grouping according to moisture content was somewhat arbitrary. Where moisture-content data were available, the following criteria were established for classifying a given soil as wet, moist, or dry:

Type Soil	Moisture Content, 1/2
#Dry clay	0-12
Moist clay or loess	13-22
Wet clay or silt	>22
Dry-to-moist sand	0-3
Dry-to-moist sand Wet sand	>7

It is recognized that the assignment of numerical limits to the various conditions of wet, moist, and dry is highly dependent on grain size, organic content, etc.; however, the criteria given are believed to be acceptable as a "rule of thumb" for grouping the data into similar conditions of moisture content.

10. When moisture-content data were not available, the soil was placed in a given category based upon its general description contained in the particular report. Soils that could not be classed as wet, moist, or dry were grouped together and labeled "indefinite."

Grouping by charge shape

11. Among the shots included in the tabulations, many of the charges detonated were not spherically shaped. Because of this, it was necessary

to define arbitrarily when a given charge departed sufficiently from resembling a point source of energy to be considered a shaped charge. Perhaps the best way to define which charges are considered shaped and which unshaped is to describe the unshaped charge. To begin with, an unshaped charge exhibits blast effects as though they originated from a point source of energy. Accordingly, spherically shaped charges were considered unshaped. Also, charges that were cubically shaped or that were built up of smaller charges into a cube were considered to be unshaped. Likewise, cylindrical or rectangular charges (with square base) were not considered shaped charges provided the height-to-diameter (width of base) ratio was less than 1.5. All charges not falling within these restrictions were considered to be shaped or to propagate the explosive energy asymmetrically to an objectionable degree.

12. Grouping by charge shape was required only in table 1 as the data contained in tables 2-6 were obtained from shots involving unshaped charges exclusively. Cratering data derived from detonations of shaped charges are presented in sheets 19-24 of table 1.

Charge-position grouping

- 13. Order. Each shot from a given series of shots in a given medium was listed in order using the charge position as the governing criterion. Those placed highest aboveground were listed first, and those positioned despest underground were listed last. This grouping was based on the reduced charge position, λ_c . In keeping with conventional practice, TNT was used as the base explosive; all other explosive types were converted to equivalent weights of TNT by using conversion factors, when such were available, as described in the following paragraphs.
- 14. Conversion of other explosives to TNT weights. The only available conversion factors for cratering were those developed by Lampson. 21*

 In a series of experimental tests, equal weights of TNT and some other explosive were detonated at identical charge positions. The craters were measured and the crater radii compared. As defined by Lampson,

$$\frac{\mathbf{r}_{\mathbf{x}}}{\mathbf{r}_{\mathbf{TNT}}} = \frac{\mathbf{E}_{\mathbf{x}}}{\mathbf{E}_{\mathbf{TNT}}} \left(\frac{\mathbf{w}_{\mathbf{x}}}{\mathbf{w}_{\mathbf{TNT}}} \right)^{1/3} \tag{1}$$

^{*} Raised numbers refer to similarly numbered items in the Bibliography at end of text.

where

 $\mathbf{r}_{\mathbf{x}} = \mathbf{crater}$ radius using explosive \mathbf{x} , ft

 $\mathbf{r}_{\mathrm{TNT}}$ = crater radius using TNT, ft

 $\mathbf{E}_{\mathbf{x}} = \text{explosive factor for explosive } \mathbf{x}$, dimensionless

 $E_{\overline{TNT}}$ = explosive factor for TNT, dimensionless

 $W_{\mathbf{x}}$ = weight of explosive \mathbf{x} , lb

 $W_{\overline{TNT}} = \text{weight of TNT, lb}$

Since TNT is used as the accepted base explosive, then $\mathbf{E}_{\mathrm{TNT}}$ = 1 and

$$\mathbf{E}_{\mathbf{x}} = \frac{\mathbf{r}_{\mathbf{x}}}{\mathbf{r}_{\mathbf{TNT}}} \left(\frac{\mathbf{W}_{\mathbf{TNT}}}{\mathbf{W}_{\mathbf{x}}} \right)^{1/3}$$

To convert a given amount of explosive x to an equivalent weight of TNT, a specific weight of TNT must be found that will make

$$r_{\overline{TNT}} = r_{x}$$
 , or $\frac{r_{x}}{r_{\overline{TNT}}} = 1$

Therefore, from equation 1,

$$1 = \frac{E_{x}}{E_{TNT}} \left(\frac{W_{x}}{W_{TNT}} \right)^{1/3}$$

Again, E_{TNT} = 1 and

$$E_{x} = \left(\frac{W_{TNT}}{W_{x}}\right)^{1/3}$$

or

$$W_{TNT} = E_{x_n}^3 W_{x_n}$$

Lettin $\mathbb{E}_{\mathbf{x}}^{3} = \mathbf{k}$, the conversion equation becomes

$$W_{TNT} = k W_{x}$$
 (2)

Note that k in equation 2 is equivalent to Lampson's E_x^3 .

15. The following conversion factors were derived by Lampson in reference 21.

Explosive	Conversion Factor, k
Amatol	0.94
Composition B	1.06
Dynamite (40% extra)	o.68 ⋅v
HBX-2	1.52
Minol	1,48
Pentolite	1.23
TNT	1.00
Tritonal	1.37

It should be noted that the above-listed factors are based on crater radius only and may be inappropriate for crater depth; however, since no other conversion system was available, the foregoing was used throughout this report to convert these types of explosives to equivalent weights of TNT. Conversion factors for these same explosives, based on the release of equal amounts of energy, are given in a paper by Cdr. Christensen. 3

16. By means of the above-listed factors, equivalent weights of TNT were computed and used in determining the value of λ_c appropriate for the specified shot geometry. For those explosive types for which a conversion factor was not available, a value of λ_c was determined by using the actual weight of the explosive in conjunction with the particular depth of burial of charge. Although this procedure is only approximate, it does provide a means of placing the shot at or near its proper location within the respective tabulations.

Charge-weight grouping

17. When several shots were detonated at a common scaled depth of burial (λ_c remains constant), the shots were tabulated in the order of ascending weight of charge.

Table Nomenclature

18. The column headings for the six tables are generally the same and the following descriptions are intended to clarify these headings.

Item Number provides a consecutive count of the total number of listings.

Source reveals the source of the data listed; the number referento

Explosive Data describe the charge used as to type and weight of

explosive and, when possible, define the weight of TNT that is the equivalent in cratering potential to the particular explosive used.

Charge Position describes the actual position of the charge with respect to the ground-air interface and the reduced position of the charge based on TNT equivalent or nonequivalent weights as discussed in paragraphs 13-16.

Crater Dimensions:

Apparent. Columns under this heading list the apparent crater depth, radius, height of lip, angle of intersection, and volume.

True. The true crater depth, radius, angle of intersection, and volume are listed under this general heading.

Camouflet. Subheadings under this general heading define the vertical and horizontal diameters of the camouflet, the radius of rupture, and the camouflet volume.

Methods of Measuring the Various Crater Dimensions

19. Various methods were used to determine the crater dimensions tabulated herein, particularly in sounding the true crater. The following paragraphs discuss these methods.

Routine survey method

20. This method adapts the simple level-surveying techniques to determine the profile of the apparent crater. This simply involves the determining of the change in elevation that occurs over an established crater diameter. Variations of this rudimentary technique are also used in determining the true crater limits.

Probe method

21. This is a method of establishing the limits of the true crater and is based on detecting a marked change in resistance to penetration by a probe. The probe is pushed through the fallback (see fig. 1) until the resistance to continued penetration increases sharply. This increase supposedly occurs at the boundary of the true crater which is defined simply as the crater that existed prior to any fallback. Measurements obtained using this method exhibit considerable scatter which is primarily due to the fact that the probe can penetrate into a fissure that is in reality a part of the complete rupture zone, thus distorting considerably the penetration that should have been observed. Because of the inaccuracies inherent in this method, its use has been abandoned.

Fig. 1. Schematic crater section

Colored-column method

22. Along a line passing through ground zero, holes 2 to 4 in. in

diameter are drilled to depths roughly 25 per cent greater than the expected depth of the crater at any given range from surface zero. The holes are backfilled with a mixture of relatively fine sand, lime, and cement coloring in proportions that will provide density and strength properties very similar to the natural media. Immediately after the shot, a trench is excavated parallel to the line of holes but offset therefrom about 3 to 6 in. This 3- to 6-in. excess is then shaved away until the center of each colored column is exposed. The columns are then surveyed using the routine survey method described in paragraph 20. This colored-column method is very accurate for determining the limits of the true crater.

23. In this method all loose material (fallback) is removed by hand and the "clean" crater is then surveyed. This method is appropriate for craters up to about 25 ft in diameter. Larger craters can normally be surveyed more easily using the colored-column method. The hand excavation method is just as accurate as the colored-column method, and is preferable in many instances, particularly for small craters.

Primary and Derived Crater Dimensions

Primary dimensions

24. Primary crater dimensions are those that are measured directly. Among these are: radius, depth, lip height, camouflet diameter, and perhaps others that some agencies may have obtained. Definition of the more widely used crate; dimensions are shown schematically in figs. 2 and 3.

Fig. 2. Sketch defining crater nomenclature

Fig. 3. Schematic diagram of typical camouflet and associated ground rise

- 25. The cratering data reported in reference 35 describe the crater radius as being the distance from ground zero to the maximum height of the crater lip. After a cursory study of crater shapes at various scaled depths of burial, it was concluded that these measurements could be made consistent with the definition shown in fig. 2 by multiplying the recorded radius by 0.8. Therefore, all values of crater radius extracted from reference 35 were reduced in this manner.
- 26. Some of the cratering data listed in reference 41 were influenced by an underlying rigid interface when the depth of overburden was less than a certain emount. For this reason, cratering data obtained from those shots influenced by the proximity of the interface were not included in the tabulations.

Derived dimensions

- 27. Derived crater dimensions are those that are computed. Among these are: area, volume, and sometimes the crater angle (see fig. 2). The crater volume was obtained by various agencies in several ways. Usually, however, it was computed by revolving the vertical, cross-sectional area of the crater through 180 degrees. In some instances, the average half-crater profile was used and revolved through 360 degrees. In isolated cases, the crater volume was determined by filling the void with some substance, noting the quantity used. Many of the references from which data were extracted did not describe the method used in computing the crater volume.
- 28. The crater angle (fig. 2) was determined from the average crater profile when it was provided. When profiles were not available, the depth, radius, and lip height were plotted on regular graph paper and an assumed profile of conventional shape was drawn through these plotted points. The appropriate crater angle was then measured from the profile as drawn.

PART IV: PROPERTIES OF THE VARIOUS MEDIA CRATERED

properties of the surrounding media, a general summary of these properties is presented for each of the test sites for which information on the media was available. Several of the test series reported soil properties for certain or all of the individual shots; however, the summary that follows is based on averages of the data provided.

Wet Clay

Dugway Proving Ground, Utah (table 1, source 15)

30. The test site is located about 30 miles west of the proving ground proper.

"The material at the wet-clay site consisted of flatlying, undisturbed layers of clay, the thickness of these layers ranging from 0.125 to 2 ft. Physically, the clay was quite homogeneous, the apparent layering being marked primarily by color variations. The deepest depth of clay recorded in a test drill hole was 62 ft. Below this depth, interbedded clays and sands probably occurred.

"Approximately vertical joints were quite numerous at the wet-clay site. In general, they were not so wide as those in the dry clay, but some were open enough to permit the flow of water. Most of the joints struck north-south, but some occurred which struck east-west.

"Seismic surveys, made by the Corps of Engineers, indicated that the seismic velocity was 2800 ft per second down to a depth of 3.5 ft; below this depth, the seismic velocity was 5600 ft per second. The 3.5-ft level probably corresponded to the water table." 15

A summary of the Dugway test site soil data is presented in table 7.

Camp Cooke, California (table 1, source 32)

31. Test shots 311, 312, and 313 of the Project Mole test series were detonated at this site which is located near the mouth of the Santa Ynez River where the ground surface was approximately 5.5 ft above the water table. The surface was hard silty clay underlain by moist sandy clay

to a depth of at least 22 ft. Table 7 symmarizes the soil data for this site.

Clear Lake, Texas (table 1, source 20)

32. The test program conducted at Clear Lake was accomplished as a part of the Underground Explosion test series. These detonations took place in Gulf Coast clay, which is more specifically typed as a sedimentary clay. Apparently the soil exploration for this site was limited to a seismic survey, which revealed a velocity of 1020 fps to a depth of 7.5 ft and a velocity of 5610 fps below this depth. This sudden increase in the seismic velocity seems to define the upper limits of the water table which fluctuate during different seasons of the year.

«Panama Canal (table 1, source 49)

33. All test shots detonated in marine muck during the Panama Canal test program were made in an area between the original canal and the south Miraflores approach channel to the Third Locks of the Panama Canal.

"The muck deposits are soft, very moist silts, clays, and organic deposits, which may be subdivided into four facies which intergrade laterally. These facies comprise gray to blue-gray silty clay; an organic black silt containing shells; black semi-decayed vegetable substances intermixed with silts; and light-gray or yellow-gray, weak plastic clay. This material was formed by deposition in swamps during Pleistocene time.

"The area used for testing is partially covered by 3 to 5 feet of old hydraulic fill of which the top one-foot is a crust of medium-hard, medium-plastic, cohesive, brown, loamy clay. This crust is softened by water that covers the area at high tide. Directly beneath the brown clay is a very soft, very highly plastic, gray clay that resembles soft soap or grease. This layer varies in thickness from 3 to 12 feet. Most of the shallow and medium depth charges were embedded in this soft mucky clay. Below this stratum is a layer of silty sand from 1 to 3 feet deep which is followed by mucky clay and silt which reaches a depth of 20 to 30 feet. The top of weathered rock varies from a depth of 26 to 36 feet."

Moist Clay

WES clay pad (tables 1 and 2, sources 39, 42, 43)

34. Cratering tests in moist clay were conducted at the WES Big Black test site located approximately 10 miles southeast of Vicksburg, Mississippi. The shots were detonated in a 200- by 100- by 8-ft-deep built-up clay pad (see reference 42 for details of construction of pad). A qualitative description of the soil is presented in table 7.

Vicksburg clay (table 1, source 44)

35. All test shots in moist clay for the WES energy-partitioning test program were detonated near the WES Big Black test site in a natural clay area. Average results of Atterberg limits tests on the natural clay were as follows: the plasticity index varied with depth from 30 at 2 ft to 13 at 5 ft to 6 at 23 ft, and averaged 13. Additional data are given in table 7.

Panama Canal residual clay (table 1, source 50)

36. All test shots fired in residual clay during the Panama Canal test series were located in an area of the Panama Canal known as White's Island. The area is an undisturbed clay barrier (located in the Third Locks alignment) that had been cut down to the present elevation and maintained as a dam between Miraflores Lake and the Third Locks excavation channel. The material consists of a compact, slightly plastic, medium cohesive, red and gray clay that is very uniform in physical characteristics (see table 7).

London clay (table 1, source 1)

37. No detailed information on the soil was given for the tests reported as conducted in London clay. However, it was assumed that the clay in this region would be moist to wet.

Dry Clay

Dugway Proving Ground (table 1, sources 15, 32)

38. Test shots 301 through 320 of the ERA Underground Explosion test program and test shots 101 through 111 of the Project Mole test program were conducted at Dugway Proving Ground, Dugway, Utah.

"The dry clay site was located at White Sage Flat, about 12.7 miles by road from the Dugway Proving Ground base camp. The site was investigated by the Corps of Engineers and its characteristics reported in detail...Great depths of lake sediments (fine unconsolidated material) were deposited there. Very thin sand lenses occurred and, below a depth of 20 feet, sand beds from one foot to ten feet thick were found. A white marl layer, whose thickness varied from hole to hole, was present. Many of the thin beds of the clays were discontinuous.

"The most important structural features of the dry clay site were two sets of vertical joints, one striking north—south and the other east-west. The north-south joints were more prominent, some of them being from one to two inches wide and filled with fairly loose clay. It was felt that the presence of these joints had a significant effect on the results obtained at the dry clay site.

"Fourteen seismic lines were shot at the dry clay site with velocities ranging from 1000 feet per second at a depth of 3.7 feet to 6150 feet per second at a depth of 93 feet."
A velocity of 5400 feet per second was observed at the greatest depth measured, 138 feet.

"Ground water at the site was considered negligible, and it was believed that the water table lay at a depth of 300 feet or more. No water table was encountered in the exploratory drill holes, one of which extended to a depth of 163 feet. A zone of capillary saturation was reported in two of the drill holes at a depth of 136 feet."15

39. For the Project Mole test program the moisture content of the soil was estimated to be greater than it had been during the Underground Explosion test program. A summary of the soil data is presented in table 7.

Aberdeen Proving Ground (table 1, source 17)

40. These tests were conducted in a very hard, dry clay, the density of which averaged about 90 lb per cu ft.

Naval Ordnance Laboratory (table 1, source 35)

41. All cratering shots during this test program were detonated in a heavy, rock-free clay. The location of the test site was not reported. Because of considerable weather variation, the moisture content of the clay varied over a wide range of values. Specific values of moisture content were not given.

Wet Sand

Aberdeen Proving Ground (table 1, source 6)

42. Test shots 1A16 through 5A42 of the Ballistics Research Laboratory (BRL) spherical charge test program were detonated at Sandy Point Beach, Aberdeen Proving Ground, Maryland. Apparently no detailed soil explorations were made at this site except for determination of the grain-size distribution. The grain-size analysis is as follows:

<u>U. S.</u>	. Sieve Size	% of Total
No.	Opening, mm	Sample Passing
10	2.0	98.1
20	0.84	94.9
40	0.42	46.2
60	0.25	11.9
140.	0.105	0.2
200	0.074	0.0

In qualitative terminology, this sand would be considered medium to fine grained.

Dugway Proving Ground (table 1, source 15)

- 43. Test shots 101 through 116 of the ERA Underground Explosion test program were made at a site located about 5 miles east of the Dugway Proving Ground base camp. The test area consisted of sand dunes with the difference in elevation between trough and crest being about 20 ft. The sand depth was greater than 100 ft. Lenses of clay and thin beds of white marl were present near the surface, and at lower depths some gravel lenses were present.
 - 44. Although the site was referred to as a dry sand site, the data

obtained in tests therein have been placed in table 1 along with the data from the wet sand shots. Reference 15 states that damp sand was encountered at a depth of a few inches. Frequent rain squalls during the firing program maintained the moisture at this depth; however, the water table was believed to be somewhat deeper than 170 ft. Considerable moisture was encountered in the lenses of clay and the rather deep layers of cemented sand and gravel.

45. Results of seismic explorations indicated the seismic velocity to be 800 to 1000 fps in the dune sands, and 1500 to 2000 fps in the water-lain sands below. Seismic values of 8000 to 9000 fps were encountered below 100 ft. More specific data on the Dugway test area sand are given in table 8.

Camp Cooke (table 1, source \(\beta \)2)

46. Test shots 301 through 310 of the Project Mole test program were detonated near Camp Cooke, California,

"The test site is located on the banks of the lagoon formed at the mouth of the Santa Ynez River. This lagoon is blocked from the open sea by a sand bar and observations indicated that the water level did not vary measurably with daily tides or otherwise. The original ground surface at the test site was approximately 2 feet above water level and the soil consisted of silty sand mixed with organic matter for the first 2 feet, with saturated sand underlying the area. The test drilling showed that this sand was reasonably consistent to a depth of 20 feet where it was underlain by the so-called Monterey Shale. For the test series the original surface was removed by bulldozer in the vicinity of the shot points and blast lines so that the final surface was from 12 to 21 inches above the water table."

Other data on this material are presented in table 8.

WES interface study (table 1, source 41)

47. Test shots 31 and 32 of the WES soil-rock interface study were detonated at the WES Big Black test site. Data from test shots where the soil-rock interface influenced the shape of the crater (shots 33 through 36) were omitted from this report (see paragraph 26). The soil-rock interface was formed by a massive concrete slab with an overlying layer of sand

The sand was "pit run" and was kept in a saturated state (see table 8).

Marshall Islands (table 1, source 53)

48. In 1952, HE shots were fired on Elugelab Island, Eniwetok Atoll, in material that is defined as a water-saturated coral sand. Apparently no detailed soil explorations were made at this site.

Dry-to-Moist, Sand"

Yucca Flats (table 1, sources 2, 7)

49. The HE test shots of Operation JANGLE were fired at Yucca Flats of the Nevada test site. For all practical purposes, the test area was flat. The soil was defined as extremely fine, powderlike sand mixed with some gravel. The seismic velocity was 3000 fps to a depth of 100 ft. A summary of other soil information is presented in table 8.

Aberdeen Proving Ground (table 1, source 6)

50. Test shots 501 through 1/4 C8 of the BRL spherical-charge test program were fired at Aberdeen Proving Ground in a large sand pit 48 in. deep. The average moisture content of the sand was 3.3 per cent. Apparently no further soil explorations were made at this site except for determination of the grain-size distribution, which was as follows:

U.S.	. Sieve Si Opening,	 % of Total Sample Passing
6 10 20 30 40 60 100 140 200	3.360 2.0 0.84 0.59 0.42 0.25 0.149 0.105 0.074	90.12 79.26 55.28 39.01 20.70 4.42 3.88 0.66 0.39

Qualitatively, this would be regarded as a coarse grade of sand.

Vicksburg dry sand (table 1, source 40)

51. The dry-sand test ser seconducted at the Big Black test

site in a rectangular pit approximately 10 by 10 by 2.5 ft. The sand was classified as being clean and well-graded. Care was taken to remold and recompact the sand after each shot to avoid appreciable density variations.

WES interface study (table 1, source 41)

52. Test shots 1-21 of the WES soil-rock interface study were fired at the WES Big Black test site. Data from test shots where the soil-rock interface influenced the shape of the crater (shots 22-30) were omitted from table 1. The pit-run sand overlying the simulated soil-rock interface (see paragraph 47) had a density ranging from 97.6 to 109 lb per cu ft, and averaging 103 lb per cu ft. Moisture-content samples were taken at 0.5-, 1.5-, and 3.0-ft depths, and the average moisture contents for these respective depths were 4.4, 6.8, and 7.3 per cent. The over-all average moisture content was 6.6 per cent. Other soil data for this site are given in table 8.

Loess

Effects of Underground Explosion tests, Natchez, Mississippi (table 1, source 20)

53. All test shots detonated in loess during the Effects of Underground Explosions test program were fired at a site near Magnolia Bluff about 7 miles north of Natchez, Mississippi. Apparently no detailed soil explorations were made at this site except for seismic explorations. The moisture content of the soil, although not specifically reported, seemed to greatly affect seismic velocity; therefore, only the surface seismic velocity of 960 fps was considered accurate. The seismic velocity at lower depths varied considerably.

Vicksburg loess (table 1, source 39)

54. These experimental tests were conducted in the northeast portion of the WES reservation. The loess in this area is very extensive and homogeneous. A quantitative description of the material is presented in table 9.

Various Soils

Vicksburg silt (table 1, source 44)

55. Test shots 48-59 of the WES energy-partitioning test program were fired at the WES Big Black test site. The test area was about 100 by 200 ft. All shots were fired in undisturbed natural sandy silt soil. A summary of the soil data is presented in table 9.

Camp Gruber, Oklahoma (table 1, source 5)

56. Several test shots were detonated in various soil types during the UET program, a portion of which was conducted at Camp Gruber. The test site is located in Muskogee County, Oklahoma, approximately 14 miles southeast of Muskogee and 60 miles southeast of Tulsa.

"The soils at the site are more or less heterogeneous and consist of all types of material ranging from fat silty clay to cohesionless clean sand. Water contents range from completely dry sand to saturated sandy silts and clays. In general, the more plastic materials are overlying the sandier materials...Geological investigations reported by the U. S. Geological Survey show that the tests were conducted in lacustrine terrace materials deposited during Pleistocene times. The bedrock consists of moderately dense sandstones and shales from the Winslow Formation of Pennsylvania Age." 5

Princeton clay loam (table 1, source 37)

57. During 1944, test shots to determine the effect of charge shape and orientation on craters in clay were detonated near the Ballistics Laboratory at Princeton University Station, Princeton, New Jersey. The soil was undisturbed, dry, hard, Sassafras clay loam. Apparently no detailed soil explorations were made at this site.

Frozen Ground

Keweenaw silt (table 3, source 22)

58. All test shots in frozen Keweenaw silt were detonated in

northern Michigan. The test site, approximately 500 ft square, was free of stones and boulders and was uniform in composition. The silt was stratified with thin lenses of sand and organic deposits that were apparently not continuous. The soil classification showed the area to be predominantly silt and sandy silt. Plasticity tests indicated the soil to be, in general, nonplastic or of low plasticity. Preliminary exploration indicated that the silt layer was 7 ft deep. The moisture content of samples of the soil varied from approximately 30 per cent to slightly more than 100 per cent. A summary of the soil information from test shot 184 at this site is presented in table 9.

Fort Churchill till (table 3 sources 23, 52)

- 59. Tests were conducted at sites located just south of the Churchill, Manitoba, airfield in 1955 and 1957. The test shots fired during the winter of 1955 were accomplished at two test sites, A and B, both in the same esker. Three explosive types, i.e. Composition C-3, Atlas 60, and Coalite 7-S (2- and 5-lb charges only), were detonated in the area designated as Blast Site A. At Blast Site B, 20-lb shots of Coalite 7-S were detonated.
 - 60. Blast Site A consisted of a layer of gravel ranging from 6 to 10 in. in thickness, below which igneous and sedimentary boulders were dispersed at random in a matrix of unstratified frozen clay referred to as unstratified till. An average unit weight of 148.7 lb per cu ft was obtained from five large chunks of the unstratified till.
- 61. Blast Site B consisted of random layers of frozen vegetable matter over a 12- to 36-in. layer of frozen gravel with unstratified till below. The vegetable-matter layer, which contained ice lenses as much as 3 in. thick, had a maximum thickness of 12 in. The average weight of the frozen vegetable layer was 74.6 lb per cu ft. The average weight of the frozen gravel was 143.3 lb per cu ft.
- 62. The specific test site used during the 1957 test series is not described other than being at Fort Churchill.

Basalt, Panama Canal Zone (table 4, source 46)

63. Test shots 1-10 and 14 of the Panama Canal basalt test program were fired in the area known as Cerro Lirio Quarry. Test shots 11-13 were detonated in the area known as Paja Quarry. Test shots 15(1A) through 18(4A) were detonated in the area known as Fort Kobbe Quarry.

"The basalt is a dark gray, compact, very hard, finegrained rock generally closely to moderately jointed and often showing columnar structure. It occurs in flows or as sills and dikes intruded into sedimentary rocks of early Miocene and older age. At Cerro Lirio Quarry it is a very hard, jointed basalt. Quarry blasting in the past apparently has superficially weakened the rock. The rock at Paja Quarry is one of the hardest basalts known in the vicinity of the Canal Zone. It is more closely jointed than the Basalt at Cerro Lirid and has a prominent columnar structure. The rock at the Fort Kobbe Quarry is a dark-gray to blue-black, very hard basalt, similar in abrasion resistance to the Paja Quarry rock. Joints are more widely spaced than average for Canal Zone basalts, and columnar structure is less prominent. Many of the joints contain a secondary filling of siliceous minerals, quartz and chalcedony."46

Niobrara chalk, site of Fort Randall Dam (table 4, source 8)

64. All test shots in chalk during this U. S. Bureau of Mines test program were detonated at Fort Randall Dam site, Pickstown, South Dakota. A summary of the physical properties of the rock at this site is presented in table 10.

Unaweep granite, Grand Junction, Colorado (table 4, sources 4, 13)

65. All test shots in granite during the Colorado School of Mines (CSM) Underground Explosion test program and the ERA Underground Explosion test program were detonated in Unaweep Canyon, about 25 road miles south of Grand Junction, Colorado. Two types of granite occurred at the test sites, a fine- to coarse-grained light-gray granite and a very coarse-grained granite. The CSM test shots were accomplished in the fine- to coarse-grained light-gray granite. The ERA shots were detonated in both types. A summary

of the physical properties of the rock is presented in table 10.

Granite, Lithonia, Jeorgia (table 4, source 8)

66. All test shots in granite during the U. S. Bureau of Mines test program were detonated at the granite quarry of Consolidated Quarries Corporation, Lithonia, Georgia. A summary of the physical properties of the rock is presented in table 10.

Limestone, Dugway Proving Ground (table 4, source 13)

67. Both test shots in limestone during the ERA Underground Explosion test program were detonated at a site located about 10 miles east of Dugway Proving Ground. The limestone site was not considered to be particularly desirable; however, no better site was found in any area investigated. The limestone had several fault zones, the largest of which occurred in the upper beds. The beds in this area ranged in thickness from 0.5 to 6.5 ft. The depth to the water table is unknown. The limestone was quite dry; however, some moisture was nearly always present along erosion channels. The seismic velocity ranged from 7000 to 12,500 fps and averaged 11,000 fps.

Navajo sandstone, Castle Dale, Utah (table 4, sources 4, 14)

- 68. All test shots in sandstone during the CSM and the ERA Underground Explosion test programs were detonated in the upper part of the Navajo sandstone near Castle Dale, Utah. The CSM test program was conducted about 23 miles east of Castle Dale, Utah, on the northwest flank of the San Rafael swell. The ERA test program was conducted about 16 miles east of Castle Dale, Utah, in Buckhorn Wash.
- 69. The primary structural feature of both test sites was the numerous sets of extensive joint systems. Both sites consisted of prominent joints striking and dipping in various directions. The exposed rock in the areas lose moisture due to evaporation; however, the unexposed rock maintain a small amount of moisture. Because of the wide variations in physical properties of the sandstone, specific values of these properties are not included in this report.

Green River maristone, Rifle, Colorado (table 4, source 8)

70. All test shots in marlstone in this U. S. Bureau of Mines test program were detonated at the Experimental Oil-Shale Mine, Bureau of Mines, Rifle, Colorado. A summary of the physical properties of the rock is presented in table, 10.

Kanawha sandstone, Pennsyl√ania (table 4, source 8)

71. All test shots in sandstone in this U. S. Bureau of Mines test program were detonated at Seifer Farm and Eakin Quenry near Franklin, Pennsylvania. A summary of the physical properties of the rock is presented in table 10.

Culebra sandstone, Panama Canal Zone (table 4, source 47)

72. The two test shots in Culebra sandstone during the Panama Canal test series were detonated on the west bank of the canal near stations 1750 and 1760. The test site was in the upper member of the Culebra formation. The formation is composed of beds and lenses of gray to buff, calcareous and tuffaceous sandstones, 3 to 10 ft in thickness. Apparently no additional rock information was obtained at the test site.

Gatun sandstone, Panama Canal Zone (table 4, source 48)

73. All test shots in Gatun sandstone during the Panama Canal test series were detonated at the south plug of the Gatun Third Locks excavation.

"The Gatun formation is composed largely of argillaceous, variably calcareous, fine-grained sandstones interbedded with fine-textured volcanic tuffs and occasional thin conglomerate beds. Bedding in the formation is massive and remarkably uniform, with individual beds attaining thicknesses of 100 ft or more. The variably calcareous nature of the formation was conspicuous in the bedused for the crater texts, where numerous small masses of hard, well-cemented sandstone graded into the surrounding medium-hard slightly-cemented sandstone. The abundance of fessils show that this formation represents the produce of marine deposition of middle Miocene age."

Shale, Panama Canal Zone (table 4, source 47)

74. All test shots in shale during the Panama Canal test series were detonated in the Cucaracha and Culebra formations on the west bank of the canal near stations 1750 and 1760.

"The Cucaracha formation consists of weak, locally bentonitic clay shales interbedded with fine, tuffaceous siltstones; medium- to coarse-grained, tuffaceous sandstones; pebble conglomerates; thinly bedded, black, carbonaceous, clayey shales; and a hard, gray agglomeratic tuff known as the 'ash flow.' The clay shales, which are predominant, consist of compact, medium hard, variably waxy or soapy, massively bedded, altered tuffs. A characteristic feature of the clay shale is the presence of irregular, smoothly-polished, minute fractures or slickensides. The color is mainly greenish gray, but some lenses within the clay shales are red brown to chocolate hues." 47

The two shots fired in the upper member of the Culebra formation were detonated in shale although the formation is composed mainly of sandstone.

Ice

Camp TUTO, Greenland (table 5, source 51)

75. Cratering test shots were detonated in Greenland in 1957 at a site approximately 3 miles east of Camp TUTO. Camp TUTO is located approximately 12 miles east of Thule AFB. The depth of the ice was greater than 100 ft and its density averaged 55.6 lb per cu ft.

Snow

Alta, Utah (table 6, source 19)

76. In 1956 the U. S. Snow Ice and Permafrost Research Establishment conducted tests near Alta, Utah, in a snow blanket 110 to 120 in. deep.

Camp Halë, Colorado (table 6, source 38)

77. The three crater test shots of the 1958 WES snow test program

were fired at Camp Hale, Colorado. The snow was 4 ft deep, with the upper 1.5 ft composed of dry snow and the lower 2.5 ft composed of icy snow. The unit weights of the dry snow and the icy snow were 8 lb per cu ft and 12.2 lb per cu ft, respectively.

BIBLIOGRAPHY

- 1. Anderson, F. W., Capt., U. S. Army, <u>Crater Dimensions from Experimental Data</u> (CONFIDENTIAL-Restricted Data). <u>FWE-18</u>, Ministry of Home Security, Research and Experiments Department, September 1942 (TIS Issuance Date, 1 October 1954).
- 2. Campbell, Donald C., LCdr., U. S. Navy, Some HE Tests and Observations on Craters and Base Surges, Project 1(9)-3, Operation JANGLE (UNCIAS-SIFIED). WT 410, Armed Forces Special Weapons Project, 1 November 1951, part of High Explosives Tests, Operation JANGLE (UNCIASSIFIED), WT-365.
- 3. Christensen, Wayne J., Cdr., CEC, U. S. Navy, <u>Cratering from Atomic Weapons</u> (SECRET-FRD). AFSWP 514, Weapons Effects Division, Head-quarters, Armed Forces Special Weapons Project, Washington, D. C., 29 June 1956.
- 4. Colorado School of Mines, <u>Underground Explosion Test Program; Series I and Series II Experiments</u> (UNCLASSIFIED). Golden, Colo., 1 December 1948.
- 5. Committee on Fortification Design, National Research Council, <u>Effects of Underground Explosions</u>; <u>Resulting Damage to Structures</u> (<u>RESTRICTED</u>).

 Vol III, No. 26, Interim Report to the Chief of Engineers, U. S. Army, June 1944.
- 6. Conant, David, and Swineford, James, <u>Cratering in Sand from Spherical Charges</u> (UNCIASSIFIED). Memorandum Report No. 669, Ballistic Research Laboratory, May 1953.
- 7. Doll, E. B., and Salmon, V., Scaled HE Tests, Project 1(9)-1, Operation JANGLE (SECRET-Restricted Data). Final Report, AFSWP 123, Stanford Research Institute, Stanford, Calif., December 1952.
- 8. Duvall, Wilbur I., and Atchison, Thomas C., Rock Breakage by Explosives (UNCLASSIFIED). Report of Investigation 5356, Applied Physics Laboratory, Bureau of Mines, College Park, Md., September 1957.
- 9. Engineering Research Associates, Inc., Instrumentation for Underground Explosion Test Program; Dry Clay (CONFIDENTIAL). Interim Technical Report No. 1, report for Sacramento District, CE, Department of Army, 1 August 1951.
- 10. , Instrumentation for Underground Explosion Test Program;

 Dry Sand (CONFIDENTIAL). Interim Technical Report No. 2, report for Sacramento District, CE, Department of Army, 1 October 1951.
- 11. "Instrumentation for Underground Explosion Test Program;
 Wet Clay (CONFIDENTIAL). Interim Technical Report, No. 3, report for
 Sacramento District, CE, Department of Army, 1 November 1951.

- 12. Engineering Research Associates, Inc., Instrumentation for Underground
 Explosion Test Program; Dry Clay; Dry Sand; and Wet Clay (CONFIDENTIAL).
 Supplement to Interim Technical Reports Nos. 1, 2, and 3, vol I, report for Sacramento District, CE, Department of Army, 1 June 1952.
- 13. , Underground Explosion Test Program; Granite and Limestone (CONFIDENTIAL). Technical Report No. 4, vol I, report for Sacramento District, CE, Department of Army, 30 August 1952.
- 14. ______, Underground Explosion Test Program; Sandstone (CONFIDEN-TIAL). Technical Report No. 5, vol I, report for Sacramento District, CE, Department of Army, 15 February 1953.
- 15. _____, Underground Explosion Test Program; Soil (CONFIDENTIAL). Final Report, vol I, report for Sacramento District, CE, Department of Army, 30 August 1952.
- 16. _____, Underground Explosion Test Program; Rock (CONFIDENTIAL).

 Final Report, vol II, report for Sacramento District, CE, Department of Army, 30 April 1953.
- 17. Fano, U., Weight of Material Required to Fill Bomb Craters (Model Experiments) (UNCLASSIFIED). BRL Report No. 488, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 21 September 1944.
- 18.* Ferrett Committee, Terminal Report for Project Ferrett (SECRET-Restricted Data). NOLR 1191, U. S. Naval Ordnance Laboratory, White Oak, Md., 1 March 1954.
- 19. Fuchs, Alfred, <u>Effects of Explosives on Snow</u> (UNCLASSIFIED). Special Report 23, U. S. Army Snow Ice and Permafrost Research Establishment, CE, Wilmette, Ill., July 1957.
- 20. Lampson, C. W., Effects of Underground Explosions, IV (RESTRICTED).

 OSRD 6304, NDRC A-359, Division 2, National Defense Research Committee of the Office of Scientific Research and Development, approved 21 February 1946.
- 21. , Final Report on Effects of Underground Explosion (UNCIAS-SIFIED). OSRD 6645, NDRC A-479, Division 2, National Defense Research Committee of the Office of Scientific Research and Development, approved March 1946.
- 22. Livingston, C. W.; Excavations in Frozen Ground; Part I, Explosion Tests in Keweenaw Silt (UNCLASSIFIED). SIPRE Report 30, prepared for U. S. Army Snow Ice and Permafrost Research Establishment, CE, Wilmette, Ill., July 1956.

^{*} See paragraph 6 of text.

î g

- 23. Livingston, C. W., Fort Churchill Blast Tests; Blasts in Frozen Glacial Till (UNCLASSIFIED). Vol II, prepared for U. S. Army Snow Ice and Permafrost Research Establishment, CE, Wilmette, Ill., September 1956.
- 24. Mann, R. L., Cdr., U. S. Navy, Igloo and Revetment Tests (UNCIAS-SIFIED). Technical Paper No. 5, Army-Navy Explosives Safety Board, Washington, D. C., October 1946.
- 25. , Scale Model Igloo Magazine Explosion Tests (UNCIASSIFIED).

 Technical Paper No. 4, Army-Navy Explosives Safety Board, Washington,
 D. C., August 1946.
- 26.* Merritt, J. L., McDonough, G. F., Jr., and Newmark, N. M., Evaluation of Data from Underground Explosion Tests in Soil (CONFIDENTIAL-FRD).

 Structural Research Series No. 152, Department of Civil Engineering, University of Illinois, Urbana, Ill., May 1958.
- 27.* Merritt, J. L., Woodling, R. E., McDonough, G. F., and Kurtz, M. K., Summary of Data from Underground Explosion Tests in Soil (SECRET-Restricted Data). University of Illinois, Urbana, Ill., 15 January 1955.
- 28. Miles, F. H., Jr., Col., U. S. Army, <u>Igloo Tests</u> (UNCLASSIFIED).
 Technical Paper No. 3, Army-Navy Explosives Safety Board, Washington, D. C., 1945.
- 29.* Perkins, Beauregard, Jr., <u>True Crater Dimensions in Various Soils and Rock (A Summary of Available HE Data) (CONFIDENTIAL).</u> Memorandum Report No. 773, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., March 1954.
- 30. Road Research Laboratory, A Comparison of the Crater Dimensions and Permanent Earth Movements in Clay, Sand, Chalk, and Gravel Soils Due to the Explosion of Buried Bombs (SECRET). R.C. 199, EAC 59, Ministry of Home Security, March 1941.
- 31. Robinson, C. S., Explosions, Their Anatomy and Destructiveness (UN-CIASSIFIED). McGraw-Hill Book Company, Inc., New York, N. Y., 1944.
- 32. Sachs, D. C., and Swift, L. M., <u>Small Explosion Tests, Project Mole</u> (CONFIDENTIAL). Vols I and II, AFSWP 291, Stanford Research Institute, Menlo Park, Calif., December 1955.
- 33. , Small Explosion Tests, Phase II-B of Project Mole (CONFIDENTIAL-Restricted Data). AFSWP 290, Stanford Research Institute, Stanford, Calif., December 1954.

^{*} See paragraph 6 of text.

- 34.* Shnider, R., Compilation of Crater Data from Surface and Underground
 Explosions (CONFIDENTIAL). Research and Development Technical Report
 USNRDL-TR-212, U. S. Naval Radiological Defense Laboratory, San
 Francisco, Calif., 5 March 1958.
- 35. Stevens, Garth, Maj., U. S. Army, The Behavior of the Shock Wave in

 Air from Small Underground Explosives (CONFIDENTIAL). NAVORD Report

 1863, U. S. Naval Ordnance Laboratory, White Oak, Md., 26 April 1951.
- 36. Swift, L. M., and Sachs, D. C., <u>Small Explosion Tests</u>; <u>Phase II of Project Mole</u> (CONFIDENTIAL-FRD). Second Interim Report, <u>AFSWP 289</u>, Stanford Research Institute, Stanford, Calif., May 1954.
- 37. Tan, E. J., Effects of Charge Shape and Orientation on Cratering in Soil (CONFIDENTIAL). NO-263, Princeton University, 25 October 1944, part of Air and Earth Shock, vol 3, Monthly Report No. AES-3 (OSRD No. 4257), Division 2, National Defense Research Committee,
- 38. U. S. Army Engineer Waterways Experiment Station, CE, Blast-Pressure

 Measurements in Snow (UNCIASSIFIED). Miscellaneous Paper No. 2-274,

 Vicksburg, Miss., June 1958.
- 39. , Cratering Effects of Surface and Buried HE Charges in Loess and Clay (UNCLASSIFIED). Technical Report No. 2-482, Vicksburg, Miss., June 1958.
- 40. , Cratering in Dry Sand (UNCLASSIFIED). Miscellaneous Paper (in preparation), Vicksburg, Miss.
- 41. , Effects of a Soil-Rock Interface on Cratering (UNCLASSIFIED). Technical Report No. 2-478, AFSWP 1056, Vicksburg, Miss., May 1958.
- 42.

 , Effects of Stemming on Underground Explosions (UNCIASSIFIED). Technical Report No. 2-438, AFSWP 823, Vicksburg, Miss.,
 January 1957.
- 43. ______, Stemming Effects for Certain HE Charges (UNCIASSIFIED).

 Miscellaneous Paper No. 2-192, AFSWP 1003, Vicksburg, Miss., March
 1957.
- 44. * , Study of Energy Partitioning for Partially Confined Explosives (UNCLASSIFIED). Technical Memorandum No. 2-422, AFSWP 788, Vicksburg, Miss., November 1955.
- 45. U. S. Special Engineering Division, The Panama Canal, <u>Crater and Slope</u>

 Tests with Explosives (UNCLASSIFIED). ICS Memo 282-P, Diablo Heights,

 Canal Zone, 8 June 1948.

^{*} See paragraph 6 of text.

- 46. U. S. Special Engineering Division, The Panama Canal, Crater Tests in Basalt (UNCLASSIFIED). ICS Memo 284-P, Diablo Heights, Canal Zone, 26 April 1948.
- 47. ______, Crater Tests in Cucaracha and Culebra Formations (UNCLAS-SIFIED). ICS Memo 283-P, Diablo Heights, Canal Zone, 30 April 1948.
- 48. , Crater Tests in Gatun Sandstone (UNCLASSIFIED). ICS Memo 285-P, Diablo Heights, Canal Zone, 14 May 1948.
- 49. ______, Crater Tests in Marine Muck (UNCLASSIFIED). ICS Memo 286-P, Diablo Heights, Canal Zone, 8 June 1948. ...
- 50. <u>Crater Tests in Residual Clay</u> (UNCLASSIFIED). ICS Memo 287-P, Diablo Heights, Canal Zone, 18 May 1948.
- 51. Unpublished Data on Explosions in Ice (UNCIASSIFIED). Tests conducted in Greenland, summer 1957. U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- 52. Unpublished Data on Investigation of Charge Shape (UNCIASSIFIED).

 Tests conducted at Fort Churchill, February-March 1957. U. S. Army
 Snow Ice and Permafrost Research Establishment, Wilmette, Ill.
- 53. Vaile, R. B., Crater Survey, Project 3.2. Operation CASTLE (SECRET-FRD). WT 920, Stanford Research Institute, Stanford, Calif., June 1955.
- 54.

 , Small Explosion Tests, Phase I of Project Mole

 (CONFIDENTIAL-FRD). AFSWP 288, Stanford Research Institute, Stanford, Calif., December 1952.

esults of Crater Measurements in Soil

				1,100	,			Ī			l					l	
_		_	*.	EXPLUSIVE DATA	Y.		CHARGE	SGE .			. 1	ָלָ ט	CRATER DIMENSIONS	SNOISNE	*		
TEM	SOURCE			CHARGE	*	"	POSI	NOIL		∢	APPARENT	F				TRUE	
0 N		NUMBER	TYPE	WEIGHT L.B	LB-TNJ EQUIVALENT	≥ [B]	Z FT	٧	φ ₂	, <u>-</u> - L	h _a	α _a DEG	, va cu F†	÷ L	= 1	αt DEG	v, v, cu FT
					:	Shots	Fired in	Clay				<u> </u>			 2.2=		
Fet	clay			,	9	;						L	, ·		0		er H
п	32	313	TNL	256	256	6.35	+0.83	+0.13	3.40	6.1		38	163.3				
2	6†	15	ThT	. 25	25	2.95=	0.0	0.0	3.86	5.66	96.0	58	217.0				
٣	64	16(1A)	TYT	50	. 50	3.68	0.0	0.0	5.00	7.2	5 .	69	0.484				
4	64	17(2A)	INI	50	. 20	3.68	0.0	0.0	2.00	7.65		42	1,59.0			,	»
2	20	B-62	TML :	1 79	†19	00 - 17	0.0	0.0	jí "	3.36							
9	15	7,02	INT	320	320 .	6.84	-2.5	-0.37	00.01	18.75	(**	17-17	4,100		23.5		
7	: 15	404	TNT	320	320	6.84	-2.5	-0.37	11.50	17.5		44	3,900		24.0		
æ	1.5	403	TNT :	2,560	2,550	13.68	-5.0	-0.37	12.75	41.75		1,1 Z	29,000		45.25		
6	61:	ij	TML	8	တ	" (1)	-1.0	-0.50	4.28	5.22	1.55	:75	232				
임	32	311	That	256	256	6.35	-3.15	-0.50	11.2	15.5		7.1	3,147.5				
킈	32	312	INI	256	256	6.35	-3.15	-0.50	9.10	17.5		39:	3,345.3		:		
ัย	64	5	TWI	25	. 25	2.92	-1.5	-0.51	6.65	8.86	1.25	ф ф	70 1				
£1	20	B-60	TML ·	49	459	0.4	-2.1	-0.52		8.00		-					
† 1	80	B-61:	TME	79	67;	4-0	-2.1	-0:52		8.00		-	*4	,.			
77	20	C-75	TWI	· 64	64	1.0	-2.1	-0.52		8.00							,
16	20	C-143	TNT	70	- 54	0.4	-2.1	-0.52		10.00							:
17	641	12	TIME	. 52	75	4.22	-1.0	-0.95	9.30	12.56	2.08	64	2,030			_	3
βĮ	64	9	TMI	25	. 25	2€€2	-3.0	-1.03	6.60	9.07	0.90	57	876		0		
16	20	B-21	TIME	1 79	64	4.0	-4.2	-1.05		10.5					* .	, ,	
8	8	C-40	TNL	79	₹9	- 0-+.	-4.2	-1.05		10.0			3				
ส	20.	C-41	TIME	₹ ₂ 64	459	4.0	-4-2	-1.05	7.0	10.d		24	1,400	11.5	13.0	55	2,900
ผ	80	11-D	TANT	179	47,9	0.4	-4.2	-1.05		10.0							
ឍ	20	C-45	TML	, 64	. 64	4.0	-4.2	-1.05	****	9.5							
₹	. 20	94-0	TML	, 1 79	459	4.0	-4.2	-1.05		9.5		14					= `
ڻ ا	20	C-47	Tran	49	49	0.4	2-4-2	-1.05		9.0							
8	20	C-49	Trari	1 9	179	0.4	-4.2	-1.05		10.0		_					61
											١	١					

Numbers correspond to Bibliography numbers.

Table 1 (Continued)

of 24 sheets) > 5 - E 3,600 α_t DEG 4 TRUE 10.0 8.0 ᆂᇉ 11.5 CRATER DIMENSIONS ψĻ va CU FT 37.0 1,360 257 737 αa DEG 7 8 5 4 2.00 101 APPARENT 98 ᇣᄔ 6.60 8.00 9.9 7.20 7.88 9.6 10.0 10.7 ᆵ da FT -1.05 -1.58 -1.58 -1.58 CHARGE POSITION Clay (Z FT -2.5 -2.5 9 ¥1′3 L⊟1′3 4.0 W LB-TNT EQUIVALENT दं द <u>द्</u>य द् त त त त त \$ ख ढ़ ढ ढ ढ ढ ढ श द द CHARGE WEIGHT LB 3 3 3 3 3 3 3 3 ω, 79 ω \dot{b} উ ₫ EXPLOSIVE TYPE THE THI TALL TAKE TATE Ħ THE EN THE LAL Ħ ENT. SHOT 707 TEM SOURCE NO.

Table 1: (Continued)

호 로 3,800 αt DEG 겁 TRUE 14.25 <u>-- L</u> 14.3 CRATER DIMENSIONS 후투 va CU FT : 574 3,410 900; α_a DEG 7 ₽ APPARENT 2.50 녙占 6.51 33.11 12.00 00-QL 10.00 20.11 12.64 7. 1. 1. 1. o**≤•**2τ 9T-4t 12.00 17.00 <u>ال</u> ق 6.05 da F Clay (Continued -1.58 -2.05 -2.05 -2.10 CHARGE . 2 H W^{1/3} LB^{1/3} Shots Fired " W L3-TNT EQUIVALENT 200 3 3 3 3 8 3 3 3 3 3 3 3 3 3 ₹ d d 4 क् **& &** \$ 8 경 ढ CHARGE WEIGHT LB 3 3 3 3 ₫ 3 3 3 उ उ उ EXPLOSIVE TYPE TATE TATE TINT TANTI TANTI H TINI Ħ E LINE Ě E EN EN THE THE SHOT X-23 B-19 C-37 B-27 A-1 A-9 A-7 A-8 TEM SOURCE Clay (8 လ္လ ရွ Š ଯ . ର 8 8 ğ 8 જ

(3 of 24 sheets)

1071	
るシー	
1951	

	ľ						f		f									
			,,	"	EXPLOSIVE DATA	٨		CHARGE	SGE				CRA	CRATER DIMENSIONS	SIONS:	*	ļ	Ð
	TEM			n	CHARGE	*		POSI	NOIL		A 3.2	APPARENT	Li		**	11	rRUE:	
	Š.			EXPLOSIVE TYPE	WEIGHT .	N-I	, E.	Z FT	ت ب	da F	e F	h _a FT	α ₃ DEG	.v _a cu FT	÷ F	<u></u> L	œt DEG	, , E
,, ,	П			9		Shots	Shots Fired	in Clay	(Continued)	ed.)			\vdash	ŭ		n .		
ا حبورا درد	Wet	clay (C	clay (Continued			9.						-	_		,			
	78	20	C-57	IMI	,169	্ট্র	· t	-1.8-	CE.8-		9.50		<u> </u>		٠,			
	79	éit j	3	TALL	0.6	င်းမ	2.0	-5.0	-2.50	1.60	8.87	0.43	-	163				
. "	900	64	6	LML	25	r,	2.32	: -7.5:	-2.57	3.00	10.96	0.98	5 b	944				
	18	64	13	i inii	7.5	\$ -	4.82	/ं: ट्रा⊑-	-2 8t	2.63	19.5t	88	-2.	1,310			•	
	82	20	c-59	TMI	†9	<i>ಪ</i>	r.0	-11.6	-2.90		10.50		-		.91			
	83	64	10	, INI	25 : \$	25: 🛎	2.92	86-	-3.08	1.98	11.85	1.00 00.1	_	₹05			39.	
	ಹೆ	20	B-14	TML	: †9	ð	0-4	-12.6	-3.15		10.00	ļ				"		
	85	20	B-15	J.N.J.	†9	to	0.4	-12.6	-3.15		10.00	_	<u> </u>					
	98	50	B-17	TIME	49	1,75	2. O	9.हाः	-3.15		8.50	-		,				
_	87	50	B-26	Tall	杪	お	0	-12.6	-3.15	ą	8.8	ļ	<u>. </u>					
ŋ.	88	20	c-28	Tht	+9	ţ	0	-12.6	-3 <u>43</u> 5	-	8.00	-	 -			= 1.7	B.	tt IL
	.66	20	c-38	LML	†9	V2	0.1	-12.6	-3.15		9.9		-			^		
١.	8	2C	.c-39	INI	64	16	4.0	-12.6	-3.15	3.70	9.50	-		ù7c	16.4	12.0	27	3,400
	15	80	C-52	TNT	, †19	15	ù.0	-12.6	-3.15		9.50						.6	,
	35	80	c-53	TINT	ф9	तं	4.0	-12.6	-3-15		8.50	_						
	8	20	0-54	TMT	49	ij	7.0	-12.6	-3.15		8.00							
	3	20	.c-55	LIMI	75	3	0.1	-12.6	-3.15		9.00	_					-ن-	
	°25	54	4	TWI	8.5	8.0	2.0	0-7-	-3.50	3-14	4.52	1.55	79	138				
_	8	20	3-11	TIMI	. †5	. 45	i.0	-24.3	-3.58		4.92				9			
Y.,	16	64	п	TIMI	25	23	2.92	-10.5	-3.60	2.93	72.11	1.51		291	-			
	.86	20	3-12	TIVIL	. 	- +5	0.4	-16.8	-4.20		00 T					T	•,	
-	8	20 :	B-13	TVT	お	.\$	0.1	-16.8	-4.20		777				,,			
لتم	ရွ	20	C-3C	TNI °	49	64	0.1	-16.8	-4.20		4.50	-						
_	-	;			2 6	,			-		,						-	

(5 of 24

Supple S	_	_		_	_		_	_		_			_	_		_	_	_		_		_	_		_	_	_	<u> </u>	_	_	_
STATE CHANGE Wallow CHANGE Wallow Wa			Vt CU FT		11	2.37	57.8	.295	256	367	333	126	304	386	290	303	255.	527	345	. 237	347	213	344		2.78	145	370	354	τo 1	298	.556
STATE CAMPRED	ĺ	ΝĖ	αι DEG			23	:‡	89	35	39	35	39	35	39	35	39	35	39	. 27	¥27	27	22	27.		27	C†7	52	£#7	24	61	715
STATE CHANGE CH	· "	Ŧ	r _t FT			1.50	4.49	7.00,	6.50	7.50	7.50	8.00	7.00	7.50	6.50	6.50	6.50	8.50	6.65	6.59	7.00	6.00	7.50		6.50	5.41	7.50	7.50	7.50	6.50	8.50
State Carte Cart	SIONS		dt FT			6.89	2.50	5.45	5.35	02.5	5:37	6.10	5-30	5.78	5.60	5.60	06:4	5.68	5.40=	4.85	_	5.02	5.55		5.40	1,20	5.55	5.12	59.5	5:25	9:50
State Carte Cart	DIMEN					, m	·			_	,	96					3 6			.,,,		- 1	,, et	7.1	· .	· ·		٥	0 0	٠	
State Carte Cart	RATER		va CU F		 	1.6	32.9	175	170	199	224	, 289	224°	हैय	514°	189	ī62	345	262	154	: 227	124	213%	229	196		152,	, 061⊹	Tiza.	1,24	235
SHOT VUNNEER TYPE TYP	Ū	FNI	α ₃	7, 17.		23	62	14	38	41	38			0	I I	14	.38		-			- 1	1		. 38	12	15 "	50,			÷6
SHOT VUMBER SHOT VIMBER TYPE TY		PPAR	ha FT		16	0.05		10	0.43	0.50	0:55	0.55	59*0	03.55	o.58	9.65	0.45	0.95	05.0	0.50	ð.38	0.23	6.43	0.50	0.54	,	0.56	1 9.0	2.60	C.66	01.0
### CHANGE	\ \	Α.	ľa FT				9.80	2	. S. 00	6.70	60°		4.	7.00	6.45	6.50₹	io,	37.60	6.65	6.50		5.40	88	6.70	6.10	4.69	6.50	9.00	6.50	5,08:	7,50
SHOT VAMPRER SHOT VAMPRER SHOT VAMPRER SHOT VAMPRER SHOT VAMPRER SHOT VAMPRER SHOT			da '	(g)	,	59:0	5. TO:	. w.		3.35:	3.35	7.50	00.4	10t.4	01:4	.3.80	3,60	4.30	4.50	3.35	4.45	3.20	4:00	4.00	1.25	2.95	3.20	ूर.		3.15	
### EXPLOSIVE CHARGE W W 3 POSITION	 W	N.		ontinue		0	0.0	0.45	0.45	0.45				0.45	0.45	-9	0.45	ò.45°		Ö.50	05.50	0.50	o.50	0.50	0.50	0.52.3	0.75	2.75	5.75	57.75	- 55.5
### EXPLOSIVE OCHANGE W W 3 3 3 3 3 3 3 3	CHARG	POSITIO	Z FT	t~	1			_					ıς̈́		Ι.			\neg	ð.	5.6				ij,	-			-		25	0.5
### EXPLOSIVE CHARGE W CHARGE W CHARGE W CHARGE CHUALENT TYPE CHARGE CHUALENT CHARGE CHUALENT CHARGE CHUALENT CHARGE CHARGE	_	,	. "	Į 4	<u>. </u>				_						_	-	- 1	-	757	=	1	-9	닉	_	Н	_	_	_	_	Щ	_
### EXPLOSIVE CHARGE W WEIGHT ECUIVAL W WEIGHT ECUIVAL W WEIGHT ECUIVAL W WEIGHT ECUIVAL W W W W W W W W W						ři	2.5	5.5	3.		3.3	<u></u>	m	က္	ξ	~	3		3	8.	3.5	3.5	3	m	<u>ښ</u>	5.5	3.(3.0	3.		
### EXPLOSIVE EXPLOSIVE CHARGE TYPE LB LB LB LB LB LB LB L	<i>u</i>	3	LB-TNT CUIVALEN	Shor		ç	. 25	36.8	36.8	36.5	36.8	36.8	36,8	36.3	36.8	8.9€≈	36•8.	9. 9. 1.	27	27	. 27	2.1	23 	27	27	25	. 27	. :27	27	. 27	. v.
9HOT EXPLOSIVE TYPE (ÇATA		Trapic.	-										· e			,0 ,0				٠٠٠		-	N.	٠	- 3		,			n:
9HOT EXPLOSIVE TYPE (PLOSIVE			-			25.	54	- 5.	47.	54	₹.	. 54	54	75	: 5‡	54	54:	27.	. 27	27	ij	13	.5	.,27	25	. 27.	27	2.5	2.	ď
9HOT EXPLOSIVALMER TYPE 6 TWT 6 TWT 8L-3L Dynamite** 8L-3C C-4** 1 Tyll C-4*	ũ							; ;						<u>`</u>					1			200	_				_				-
A-A-1 A-A-1 <t< td=""><td></td><td>,</td><td>시 기 기</td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td>*</td><td>+</td><td>*</td><td></td><td>*</td><td>., +-</td><td>*</td><td></td><td>*</td><td>11</td><td></td><td></td><td>4</td><td>·</td><td></td><td>aig dista</td><td></td><td></td><td></td><td></td><td></td><td>+</td></t<>		,	시 기 기		*			*		*	+	*		*	., +-	*		*	1 1			4	·		aig dista						+
10. SOUNGE NUMBER NUMBE			EXPL			C-4	TML			Dynamite	C-7**	C-4+	°-7**	14+°	***	ુ. -7 +	° +*+7-⊃	in in	41-0	C-4+	C-4**	****	Demann te								
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SHOT	NUMBER			57	· y	EL-31	EL-32	五-34	EL-35	EL-36	EL-37	EL-38	西-39	Ot-13	EL-141	EL-117	KL-10	표-11	五-15	EL-16	Ř20.	五-21	配-33	н	A-1	A, 2	, Å-3	А-4	.00
	5.5	מלפ	<u> </u>		clay	39. 4	50	††	-=	- :		. }	,"			7	1	-	. 11		_		┪			30.	₽3 ∑			43	,
	'u'	TEM	0 2	ه ښو	Moist	7,02	103	104	105		107	108	8	97	目	112	113	11,4	115	116	711	118	611	ξĬ	ក្ត	R	123	124		9हा	123

				STAC BASSO STAN	8							Н		,	4.	c	
				EAPLUSIVE UAT		.,	CHARGE	SE			3.	1	CRA LER DIMENSIONS	CNOICE		. !	
ITEM	TEMSCURCE	SHOT		CHARGE	.; ≯		ISOd	NOL		, A	APPARENT	<u>.</u>	: 0 . 6:	,	o TE	TRUE,	o
NO.	. 45.	NUMBER		WEIGHT	ECUIVALENT		Z FT	ر د د	- 8°L	ू .	ξ. C	g DEG	Vac.	÷⊬	<u>-</u> 1	αt° DEG	مري وري الج
					Shots	Fired	in Clay ((Continued)	(pg			0			<i>""</i>	8.	٠
Mols	Moist clay (Continued)	ed) ' '		45.				36 1 0		. تد	^.		. 0	4	3,	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
128	75	· S-23	Dynamitet	54.	36.8	3-32	-3.0	-0.90	00.1	7.50	.0.56	27:	285	6.35	8.00	ू हु त	510
84	7.5	S-24 :	Dynamitet	. 54 ·	36.8	3.32	-3.0	-c•90	O†•†		€ 4.°C	34	.332) :	6.60	8.00	09	530
130	24	S-25 ·	Dynamite††	54:	: 36.8	3.32	-3.0	-0.90	06.4	8.50	0.59	84	458	6.70	0.6	55.	Q.
131	÷ 2₹8	S-26	Dynamite††	54	36.8	3.32	-3.0	-0-90	06.4	8.59	하고	75	455	9.90	00:6	52	731
132	, 15	S-27	Dynamite+t	75	36.8	3.32	-3.0	_0.9o°	5.00	7-50	0.18	35	403	6.70	8.50	苡	693
133	4,	s-28	Dynamite**	54	36.8	3.32	-3.0	-0.90	5.60	8.00	0.60	37	476	6.70	9.00	1,1	. 657
134	. 42	S-29	Dynamite**	54	36.8	3.32	-3.0	-0.90	5.10	8.50	0.48	39	181	6.90	9.00	147	902.
135	39	56	† - 5	1.0	1.0	1.00	-1.0	-1.0	1.30	2.30	0.16	22	3.39	2.05	2.30	₹4	19:0
136	41.4	EL-8	C-14**	. 27	27	3.00	-3.0	-1.0	%-€	9.60	0.45	04	196	,			
137	771	EL-9	C-4+	27	27.	3.00	-3.0	-1.0	3.000	6.15	0.55	33	127	6.50	6.50	ξĖ	332
138	11	EL-12	-4+O	27 :	. 27	3.00	-3.0	-1.0	2.75	6.0	0.45	30	iı.	5.65	0.9	23	259 。
139		हा-ग्र	C=4**	- 27	27	3.00	-3.0	-1.0	04.+	6.75.	0.45	0#	276	6.40	7.50	37	1446
셤	41		C-4+	. 27	. 27	3.00	-3.0	-1.0	3.35	6.00	0.25	33	150	6.12	7.00	32	289
	ij	7六一国。	C-1++ : : :	27	27 -	3.00	-3.0	-1.0.	2.95	5,80	0.28	33	ੁ 911	6.24	6.00	23	264
142	c) 114	EL-18	C-1+*	27	27	3.00	-3.0	-1.0	4.33	7.30	0.70	710	282	7.10	7.50	37	191
143	77.	RL-19	C-4+	27	27	3.00	-3.0	-1.0	3-45	6.15	0.52	33	174 :	6.40	7.00	었	330
1	7.7	EL-22	C-4+	27	27	3.00	3.0	-1.0	3.30	6.00	0.65	30	146 °.	6.30	7.00	23	318
145	177	EL-23	C-1+*.	27.	27	3.00	-3.0	-1.0	3.90 3	6.70	0.55	Q4	230	6.65	7.00	37.9	373
146	44	EL-24	, +ħ-ɔ	27	27	3.00	-3.0	-1.0	2.20	5.30	0.48	33	8	6.00	6.00	35	230
147	75	s-8	C-4+	27	27	3.00	-3.0	-1.0	2.20	00.9	0.56	56	101	5.45	6.70	25	273
143	21	6 - 8	C-41	- 27	. 27	3.00	-3.0	-1.0	2.75	5.80	0.50	33	128	5.65	6.85	143	254
149	715	s-10	C-1+	27 : ,	27	3.00	-3.0	-1.0	2.80	5.75	0.62	34	127	5.60	6.35	57.	290
150	242	S-II	C-4++	. 27 .	27	8	-3.0	-1.0	3.20	6.70	0.70	27	186	6.25	8.00	61	164
151	ξ ¹ ,	S-12	C=4++	27	27	3.00	-3.0	-1.0	3.35	7.00	 	34	213	6.30	: B: 00:	20	66₁
152	1,2	S-13	C-4+	27	27	3.00	-3.0	-1.0	2.80	6.60	69.0	31	169	6.20	7.35	64	349
153	4.2	S-14	C-411	27	27	3.30	-3.00	-1.0	3.00	6.50	0.80	£4	178 .	6.00	7.50	94	413

++ 12/3 stem

	-			EXPLOSIVE DATA	'A .		CHARGE	3GE				CR.	CRATER DIMENSIONS		2		
GITEM	ITEM SOURCE	SHOT		CHARGE	*	ŗ	. POSI	POSITION,	,	¥	APPARENT	. LN			ı.	TRUE	
0 2.		NUMBER	TYPE	WEIGHT LB	LB-TNT EQUIVALENT	¥ [] 	z FT	γ	da FT	fa FT	ћа FТ	α _a . DEG	SCU FT	dt.	- <u>1</u>	α, DEG	CU FT
"	-	,	,		Shots	Fired 1	in Clay ((Continued)	g)		ľ	\vdash		-\		'	
Moist	clay ((Continued)	id)														(A)
154	142	s-15	C-h#	. 27	27	3.00	-3.0	-1.0	3.10	6.50	0.63	32	182	6.25	7.50	25	604
1.55	15	s-16	C-4#	27	27	3.00	-3.0	· -1.0	3.40	6.75	0.58	31.	181	6.30	7.15	5	392
156	45	S-17	C-1+	27	27	3.00	-3.0	-1.0 :	3.90	7.00	24.0	ಜ	. 234	6.00	8.8	84	984
157	Ŋ	s-18	C-l+*	12	27	3.00	-3.0	-1.0	oz•4	7.00	05.0	34	. 298	6.8%	55.	56	, 654
158	1,2	S-19		27	27	8.6	-3.0	-1.0	00°†	6.90	0.50	32	223.	6.20	7.50	58	750
159	1,2	8-20	**†-∪	27	27	3.00	-3.0	-1.0	01.4	7.00	0.58	9	642	01.9	7.50	7.75	705
160	5	? S-21	C-4##	27	27	3.00	-3.0	-1.0	00*†	6.50	99.0	<u>.</u>	230 ≈	01.9	7.00	84	379
191	.20	.77	TWT	200	500	5.85	-6.0	-1.03	9.43	16.94		11	3,550				
7,62	5	7	TALL	25	25	2.92	-4-5	-1,54	3,18	7.26	_	35	213	7.25	71.6	17.	014,1
163	, <u>5</u> 0	4	TINI	75	75	4.22	-8.0-	-1.90	5.00	10.95		ଝ	:242		u		
1 91	39	58:	C-4	1.0	1.0	1.00	-2.0	-2.00	\$7t O-	2.50	0°.30	27		3.11	2.50	क्र	57.6
165	39	88	C-1	1.0	1.0	1.00	-2.25	-2.25	-0.13§	4.50	0.32	18		3.26	3.00	Ł#	35.6
166	33	69	C-4	1.0:	1.0	1.00	-2.50	-2.50	-0.50§	4.00		21		3.59**	3.00	18	38.6
167	2	m	TINI =	<i>≠</i> 8.0	9.0	2.00	-5.0	-2.50	1.68	4.35	-:-	147	48.8	6.35	5.40	53:	233
<u></u>	39.		1-5	1.0 🖺	1.0	1.00	-2.75	-2.75	-0.858	3,50:		25	. ,	3.73	2.80	25	33.4
169	20	ĵų,	TALL	. 75	75	4.22	-12.0	-2,84	1.95	12.32		22	374				
170	33	59	C-4	1.0	1.0	1.00	-3.00	-3.00	-1-54§	3.50		32		4.05	2,50	35	19.5
171	39	8	C-4	1.0	0.1	1.00	+3.50	-3.50	-0.58§	3.50	•	22	,	See Th	Table 2	(Camp)	(Campuflets)
172	50,	8	TMT	8.0	8.0	2.00	-7.0	-3.50	2.50	3.51	0	62	56.1				
173	36.	t,	t-0	1.0	1.0	1.0	-3.90	-3.90							,		,
7,1	39	વ	7-0	1.0	1.0	1.8	-4.00	-4.00	-0.19§	3,00	 	19		See T	Table 2	(Camo	(Campuflets)
173	88	77.	4-0	1.0	1.0	1.8	-4.25	-1/25	-0.50§	₩.00	2)	21	,	See Ta	Table 2		(Campuflets)
176	33	₹ 62	η ₆ .0	1.0	1.0	1.00	-4.50	/24.50	-0.12§	3.50			,	:See ⊡a	Table 2	(Camp)	(Campuflets)
177	39	73	r-n	0.1	1.0	1.00	-4.50	-4.50	-0.08§	4.00				Crater	not	and Smp	
178	39	63	C-4.	1.0	1.0	1.00	-5.50	-5.50	\$21.0-	5.00				Crate	not	क्षेष्ठ आहे	
, <u>179</u>	39	₹	C-4	1.0	1.0	1.00	-6.50	-6.50	-0.03§	3.8	-						
3	•					١] :				<u> </u>	1					

** 1/3 water stermed.

§ Above oxiginal ground surface.

(8 of 24 sheets

	7			EXPLOSIVE DATA	, 4		CHARGE	SE			Ÿ	S.	CRATER DIMENSIONS	NSIONS		. "	,	Ę
TEM	ITEM CONDOC	SHOT		CHARGE	*		POSITION	" NOI		\ <u>*</u>	APPARENT	۱			-	TŘUE		
O N	17400e		EXPLOSIVE TYPE	WEIGHT	LB_TNT EQUIVALENT	* <u>E</u>	, z	, بہ	da FT	r _a	h _a	œ _a DEG	va . CU FT	đị T	= E	at DEG	vt cu FT	T
					Shots	s Fired	in Clay	(Continued)	ied)			<u> </u>		- - -	,			Ė
Motst	clay	(Continued)	: (p)		.5						<u> </u>	 						Ī
180	68 ,	74	t-0	0.5	0.5	0.79	-5.56	-7.00	0.018	3.50		,	<i>t</i> .	See Ta	Table 2	(Camo	(Camquflets)	T
181	39	: 65	C-14	1.0	1.0	7.00	-7.00	-7.00	-0.03\$	8.8				See Ta	Table 2	(Camo	(Camquflets)	Т
182	39	99	t/−2	1.0	1.0	1.00	-7.50	-7.50	0.018	2.50	<u> </u>							
183	33	75	c-1	6.0	0.5	62.0	-6.35	-8.00										Τ.
181	39	. 67	: c-h	0.1	0.1.	1.00	-8.00	8.8	-0.01§	2.50					-			Τ-
185	39	76	C-14	0.5	5.0	0.79	-7.14	-9.00		-					,		,	Τ
186	39	78	t-0	0.5	6.0	0.79	16.7-	-10.00	-0.01§	2.50	,	<u> </u>						, ·
187	39	79	C-14	9.5	6.0	0.79	-8-33	-10.50	41			-	2			**		Г
88	. 39	8	° +1-0	0.5	0.5	0.79	£7.8-	-11.00						Crater	not du	ug out	, ,	i.
ъў.	39	77	° 1−0	o.5	0.5	0.79	-9.13	-11.50	0.0		1.			See Ta	ble 2	(Camp	(Campuflets)	
198	39	81	t-0	0.5	0.5	0.79	-9.52	-12.00	0.0					See Ta	Table 2	(Camo	(Camquflets)	_
μ	clay		•						,									Ė
161	15	301	TML	350	320	6.84	+3.50	+0.51	1.00	2.50		34		1.00	2.50	34		
192	54	111	TAT	256	256	6.35	+1.65	+0.26								2.4	0+/	
193	35	104	TMT.	256	256	6.35	+0.83	+0,13	1.47	5.40	0.25	54	60.2				820	
194	35	701	TATI	256	256	6.35	0.0	8.0	3.90	9.9	1.15	42	232.1		->-	1 .	1,990	
195	1.5	302	TNT	350	320	6.84	0.00	0.00	7.00	7.25		82	240	5.80	9.75	10	800	
ъ <u>у</u>	32	103	TAXE	256	256	6.35	-0.83	-0.13	ij	· Partial		detonstion	uo			-1		
161	15	303	TALL	320	320	6.8	-1.30	-0.19	5.50	9.00		32	900	7.00	13.50	54	2,300	
д	ξī	308	TINT	2,560:	2,560	13.68	-2.60	-0.19	% ट्रा	80.00		31	5,400	13,50	24.50	111	000°01	, q
<u>8</u>	32	306	TXT	256	256	6.35	-1.65	-0.26	6.20	9.10	0.70	31	538.2				3,530	,
8	32	102	TREE	256	256	6.35	-3.18	-0.50	6.40	10.25	0.65	04	810.4				3,120	
<u>8</u>	32	1025	TINE	256	256	6.35	-3.18	-0.50	5.35	9.60	0.95	:37	588.2				4,570	П
ä	15	316	TMT	017	210	4.79	-2.45	-0.51	9.00	8.0		33	. 740					,
8	15	ď	TALL	320	320	6.84	-3.50	-0.51	6.80	10.50		39	920	20.00	13.75	8	3,100	
Ŕ	15	310	THE	320	320	6.84	-3.50	-0.51	9.	8.1		38	8	0.01	14.50	53	2,900	•
4	1	المثني رحداد	9						ı.							1		1

W 3 Z A FT FT DEG CU FT	L			П,	EXPLOSIVE DATA	4		CHARGE	351				S	CRATER DIMENSIONS	NSIONS			,
Marche Tree March Marc		- HOEL	SHOT	2	CHARGE	≱		FISOA	NOI		A	PARE	 - -			F	RUE	
1. 1. 1. 1. 1. 1. 1. 1.			NUMBER	TYF	WEIGHT LB	LB-TNT, EQUIVALENT		иH	٥٠	da FT	يا د		o e c	va cu F⊤	dı FT	fi FT	ort DEG	VI.: CU FT
1. 2.0.	\sqcup				3	Shots !	Tired in	Clay	Continue	⊋ ⊋		٠,,						* .
13.0 Title 1.0 1	. ฮ	ay (Cox	otinued)										_				٠,	
15 399 Titol 2,560 2,560 13.66 -7.00 -0.51 13.50 23.00 31 13.00 13.0	\vdash	1.15	313	TIME	88	320	6.8	-3.50	ı	8.00			36	1,500	9.50	15.25	141	3,000
15 312 Tito 2,560 2,560 13.68 -7.00 -0.51 15.90 25.00 31 13,000 13.00 17.0		15,	309	TMI	2,560	2,560	13.68	-7.00	l	15.50	21.50		34	7,300	17.50	29.50	715	000,61
15 317 Tith 2,556 2,560 13.68 77.08 7.05 23.09 34 11,000 17.08 27.05 23.00 34 11,000 17.08 27.00 27.51 13.50 23.00 34 11,000 17.00 27.05 23.00 34 11,000 27.00 32.	Н	15	312	TMI	2,560	2,560	13.68	-7.00	-0.51	15.00	26.00	<u> </u>	31	13,000	18.00	30.50	┺-	25,000
15 319 TRY 2,560 2,560 13.66 -7.00 -0.51 13.50 23.00 14. 0.00 17.00 65.00 13.50 13.50 14. 0.51 14. 0.50 14.	_	15	317	TATE	2,560	2,560	13.68	-7.00	-0.51	15.50	23.00		赤	1,000	17.00	27.50		000,61
15 315		15	319	TXI	2,560	2,560	13.68	-7.00	-0.51	13.50	23.00		#.	7,800	17.00	25.00		15,000
15 \$16		15	315	TML	¥0,000	000,04	34.20	-17.5	-0.51	1,2,00	8,49		32	190,000	00.74	78.00		350,000
15 311 Title 256 256 256 2.00 1.00 2.50 1.00 1.50 1.05		15.	÷18	IMI	320,000	320,000	68.40	-35.00	-0.51	00.09	120.00		\vdash	100,000	77.00	130.00	94	1,800,000
10. 10.	_	13/	311	TALL	89	8	2	-2.00	-1.00	2.50	00° 1		1,7	88	2.00	5.50	72	250
15 305 mm. 256 6.35 -6.35 -1.00 5.80 10.50 1.60 37 896.7	\vdash	SK SK	101	TMT		256	6.35	-6.35	-1.8	04.2	10.55	1.25	37	742.4	ľ			1,230
15 305 Tive 320 320 5.84 -7.00 -1.02 7.00 11.75 56 1,300 11.50 16.50 57 1.02 1.02 1.02 1.02 1.03 1.03 1.05 1.0	-	32	205	TMI	256	256	6.35	-6.35	-1.00	5.80	10.80		37	856.7		o ×		8,380
15 Sametry 100, 12.50 12.50 12.50 14.0 12.50 14.0 12.50 14.0 15.00 1	_	15	305	TMT	320	320	6.84	-7.00	-1.02	7.00	11.75		59	1,300	11:50	16.50	51	009,⁴
15 314; TWT 320 320 6.84 -1.25 1.05 15.00 3.0 41 86 4.70 6.50 54 1.50 1.5		1	Sometry	TAKE	320	320		-7.00	-1.02	7.00	ाट. ५०		14.1	υ, 3δο	10.50	15.00	55	3,500
15 306 Tife 18.00 320 320 6.84 -14.00 -2.05 15.00	-+	15	314;	TINI	38	ထ	a	-2.50	-1.25	3.00	3.0		11	98	07.4	6.50		° 230
15 307 TWT 220 320 6.84 -21.00 -3.07 1.00 10.00 20 10.0 26.50 15.50 55 15.50 55 15.50 15	\dashv	3.5	306	TIME	320	320	6.8	-14.00	-2.05	1.00	15.00		56	236	18.00	20.00	弘	006.6
Pentolite 1.0 1.22 1.07 40.35 0.56 0.67 46 46 46 46 46 46 46	-4	35	307		320	320	.9 9.9	-21.00	-3.07	1.00	10.00		କ୍ଷ	100	26.50	15.50	-	2,400
5 Pentolite 1.0 1.22 1.07 +0.37 +0.37 +0.67 48 6 48 6 <t< td=""><td>. 겉</td><td></td><td>lay§§</td><td></td><td>``</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٧٠.</td><td>,</td><td></td><td></td><td></td><td>·</td></t<>	. 겉		lay§§		``								٧٠.	,				·
35 Pentoliite 1.0 1.22 1.07 40.23 6.79 0.83 51 Average of ta from two sizes 2.20 2.	\dashv	35		Pentolite	1.0	1.22	1.07	+0.37	+0.35	0.58	29.0		87	,			, ¥1	ŕ
35 Pentolite 1.0 1.22 1.07 40.12 1.17 1.33 1.74 44 Average of ta from four four formality 1.00 1.00 0.00 0.00 0.00 1.31 1.74 44 Average of ta from three states of the following send 1.00 1.00 1.00 0.	-+	35		Pentolite	1.0	1.22	1.07	+0.25	+0.23	0.79	0.83			ō		two	ots	6 7
35 Peritolite 1.0 1.22 1.07 0.00 0.00 1.33 1.74 44 Average data from three 35 Peritolite 1.0 1.22 1.07 -0.12 -0.12 2.57 2.40 52 Average data from three 35 Pentolite 1.0 1.22 1.07 -0.25 -0.25 2.25 2.23 53 Average data from three 35 35 35 Average data from three 35 35 35 35 35 35 35		35		Pentolite	1.0	1.22	1.07	40.12	+0,12	1.17	1.33	· _=	84	ġ	ta from	four	hots	2
35 Pentolite 1.0 1.22 1.07 -0.12 -0.12 2.57 2.10 45 Average of ta from three 35 Pentolite 1.0 1.22 1.07 -0.25 -0.25 2.25 2.23 53 Average of ta from two stand Stand Average of ta from two stand 320 320 320 6.84 43.50 4.051 0.50 4.00 14 0.50 4.00	-	35		<u>Pertolite</u>	1,0	1.22	1.07	0.0	0.0	1.33	1.74		1	o	ta from		shote	,
35 Pentolite 1.0 1.22 1.07 -0.25 -0.25 2.37 2.40 52	-1	32		Pentolite	1.0	1.22	1.07	-0.12		79.1	2.10		45		ta from		shota	
35 Pentolite 1.0 1.22 1.07 -0.36 -2.75 2.23 53 Average of ta from two sand	-	35		Pentolite	1.0	1.22	i.07	-0.25	-0.23	2.37	2.40		52				,	
sand Shots Fired in Sand Logical Street of the Sand </td <td>_</td> <td>35</td> <td></td> <td>Pentolite</td> <td>1.0</td> <td></td> <td>1.07</td> <td>-0.38</td> <td>-0-36-</td> <td>25.25</td> <td>2.23</td> <td></td> <td>53</td> <td></td> <td>ta from</td> <td>two</td> <td>ots</td> <td></td>	_	35		Pentolite	1.0		1.07	-0.38	-0-36-	25.25	2.23		53		ta from	two	ots	
101 TWT 320 6.84 +3.50 +0.51 0.50 14.00 14 0.50	_						Shots]	in.	Send	->			-					
101 TWT 320 320 6.84 +3.50 +0.51 0.50 14.00 14 0.50	. SI	п								0			-					
		15	101	TALL	380	320	6.8	+3.50		05.0	00.4		77		0.50	4.0		

Moisture content and temperature of the clay varied over a wide range.

(10 of 24 sheets)

J Only INI equivalent weight given.

-				EXPLOSIVE DATA	¥	à.,	CHA	SGE				P.	CRATER DIMENSIONS	SNOISNE			9	ř
- 0	ITEM SOURCE SHOT	<u>.</u> - o		CHARGE	3		POSITION	NOL	<u> </u> 	Ä	A PP ARENT	Į,				TRUE		Τ.
≥ 1	NON	NUMBER	EXPLUSIVE TYPE	∴ WEIGHT LB	LB-TNT EQUIVALENT	w' 3	Z FT	۲٥	da FT	. F.1	ha FT	α ₃ DEG	Va CU FT	₽ Ŀ	- 1:	αt DEG	vt CB FT	^
ıl					Shots	Fired in	Sand (Continued)	୍ଷ କ			<u> </u>				-		_
0	sand (Continued	Inued)			••												a.	
il	32	303	TALL	256	256	6.35	-1.60	-0.25		Partial		detonation	uo ;	Data	not re	reported		l _c
	32, 30	30⊱	INI	256	256	6.35	-1.60	6.25	6.30	01.61		£	2,070					т
I	32	20t	TINI	256	256	6.35	-1.65	-0.26	2.60	9.45	O4.0	3	363.6			_	046	
	32 10	10€	TNL	256	256	6.35	-1.65	-0,26	4.55	9 . 8	8	35	1,98.2	9.4	9.3ö	37	989	_
ıl	41: 9	1A20	Pentolite	1.04	1.27	1.08	64.0-	-0.45	1.16	2.33		8		Hi		╀		Τ-
l	6 14	1A22	Pentolite	1.05	1.29	1,09	-0.50	94.0	1.82	2.54		28				_		<u> </u>
	, 6 1A	1421	Pentolite	1.06	1.30	1.09	-0.50	94.0-	7.80	2.54		83						т
	Щ	203	TINE	, 256	256	6.35	-3.18	-0.50	3.95	8.35	0.95	£	355.6			_	826	Ė
	32 30	301	TMT	256	256	6.35	-3.17	-0.50	Ω.	Sand and	ater 3	rapidly	y filled o	ater				_
	32 30	302	TINE	= 9 5 2	256	6.35	-3.17	-0.50	8.9	20.00	8.0	33	3,387.4		<u>_</u>		()	
	32 30	309	INI	952	256	6.35	-3.15	-0.50	6.10	16.70		3	2,718.4					ı
i	32 31	310	TALL	256	256	6.35	-3.15	-0.50	5.20	17.50		94	2,598.0				237	1
	32 7 40	ተዕገ	TANT	256	256	6.35	-3.18	-0.50	5.50	10.50	09.0	56	4.428	6.30 °	11.30	88	1,182	_
	32 40	106	TINT:	256	256	6.35	-3.17	-0.50	7.00	58*6	1.25	145	672.7		,.			_
- 1	15 10	10£	TNI	330	320	6.84	-3.50	-0.51	6.50	००: टा		.35	1,300	7.50	15.50	<u>ε</u>	2,600	~
	15,	e e	TIMIL	320	320	6.34	-3.50	-0.51	7-50	13.00		33	1,600	8.75	16.80	32	2,800	٥
- 1	15 11	511	TINE	330	320	6.84	-3.50	-0.51	6.75	oc•₁τ		8	1,900	7,50	17.50	27	3,800	r –
- 1	15 10	109	TINT: :	2,560	2,560	13.68	-7.00	-0.51	8.50	24.75		23	8,200	13,50	29. 75	82	14,000	
	15 11	211	TMI	2,560	2,560	13.68	00°-2-	15.0-	12.50	00*0ξ	-	55	13,000	17.50	37,00	33	25,000	_
	15 11		TINI	.000,04	40,000	34.20	-17.50	-0.51	23.00	75.00		સ	180,000	30.00	82.50	₹	300,000	т
	32 30	305A	Dyramite	230	. 171.8	5.56	-3-17	-0.57	д	Data not	reported	Pg.				L		Ī.
	32 = 30	=	TWT	52.6	256	6.35	11-4-	-0.75	0 <u>0</u> .9	19.50		‡				ļ.,		Т".
	35 40	707	TANT	256	256	6.35	17.4-	6.7	œ. 9	11.05	1.45	35	942.7	8.8	12,50	33	1,687	$\overline{}$
.		1424	Pertolite	1.05	1.29	1.09	T0*T-;	-0.93	τς «τ°έ	3.02		34.					-	
	6 : 1A	: JA23	Pertolitè	96.0	1,18	1.06	-1.00	46.0-	1.76	2.89		35	2.2					_
	32 20	202	TANT	256	256	6.35	-6.35	-1,00	ፚ	Partial o	de tonation	Top	Data	Data not reported	rred	_		-
8	Detonated in shot number	०पुड चा		303 crater (item 305).													٠	1

	ساسا آ ا اساسا س		·			2,630 1,200 1,
			······································			
	04.18.50	12.50 6.50 6.50 17.00	12.56 5.50 6.50 17.00 22.00	23.08 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5	25.50 25	17.80 17.80
	1, 4, 4, 9			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
,	1.05	1.95	0.10	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.
ued)	5.50 5.85 6.00 4.00	5.50 6.00 8.50 1.00 1.50 1.50	5.50 6.00 8.50 4.00 3.50 9.00 4.50 3.50	5.50 6.00 6.00 6.00 9.50 9.50 9.50 7.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9	5.50 6.00	75.5 78.5
Sand (Co		''} 	" 	"】 	╵╸┥╸┩╸┩╶┩╸┩╸┪┈┩╸┩╸┩╸┩╸┩╸┩	"}
E	6.35		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.84 1.10 6.83 1.10 6.84 1.10 6.84	6.6 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	6.63 1.10
Shots 256 256	320	256 380 380 380 380 380 380 380 380 380 380	330 380 380 380 380 380 370	236 338 338 338 338 5,44 6,44 6,48 1,33 0,67 0,67 0,67 0,67 0,67 0,67 0,67 0,67	330 330 330 330 330 330 330 340 547 647 647 647 647 647 647 647 647 647 6	238 388 388 388 388 388 11.1.1.1.1.3.3 6.4.4 6.4
256 256 256	320	350 8 8 8 8 350 9 350 9 8 9 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	380 380 380 380 380 5.28	320 8 8 8 330 320 320 320 5.28 5.29 1.10 1.10	380 8 8 380 380 380 380 5.28 5.28 5.29 0.55 5.25 5.25 5.25	380 8 8 380 380 380 380 5.28 5.29 5.29 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.9
TIVE TIVE TIVE TIVE	TIVE	TATE TATE TATE TATE TATE	TWT TWT TWT TWT TWT TWT	TWT TWT TWT TWT TWT TWT TWT Pentolite Pentolite Pentolite Pentolite	tolite	tolite
send (Continue) 32 202 32 212 32 404 15 105	4	111 411 501	1 1 1 1 1	1	111 116 106 107 107 502 501 107 108 1/2 02 1019 503 504 1/2 02	
#et send (0 280 32 281 32 282 32 282 32 284 15		·		285 15 287 15 288 15 288 15 289 6 290 6 291 6 893 6	289 15 28	289 15 28

(13 of 24 sheets)

	_		ui i	EXPLOSIVE DATA	∢.		CHARGE	3GE				S,	CRATER DIMENSIONS	SIONS			
TEM	TEMISOURCE	SHOT	ί	CHARGE	3		POSI	NOIL		Α.	APPARENT	<u>ا</u>		3	T.	TRUE	
o Z		NUMBER	TYPE	. WEIGHT LB	LB-INT . ECUIVALENT	. E	Z FT	yc	da FT	ra FT	ha FT	α _a DEG	v _a cu FT	-p-	± [:	α _l	v _t cu FT
					Shots 1	Fired in	Sand	Continued)	ਜ਼ਿ	<u> </u>	-	F	,	-			
Dry-t	Dry-to-moist	Sand ((sand (Continued) :						,,		-			и			
305	9	692	TMT	٥-4	٥٠٠١،	1.59	+0.50	.+0•30	0.22	1.72	0.05	11				-	
306	6	1011	Pentolite	1.10	1.35	οτ.τ	+0.25	+0.23	0.18	1.19	11.	_	0.34				
307	9	टाञ	Pentolite	1.10	1.35	1,10	+0.25	+0.23	0.25	1.05	0.15	-	0.38				
308	9	693	TALL	4.0	0.4	1.59	+0.30	+0.20	0.33	1.73	90.0	17					
8	9	₹69	TML	0.4	0.4	1.59	+0.30	+0.20	0.32	1.87	0.07	16					
330	7	ず田	TALL	2,560	2,560	13.68	+2.01	+0-15	1.90	01.9	2.80	23	011	2.10	8.00	4	180
311	7,0	695	TAKE	4.0	4.0	1.59	+0.20	+0.10	64.0	2.17	90.0	91.9					
312	0.1	969	TAIL	4.0	γ.O. τ	1.59	+0.20	+0,10	0.57	2.14	01.0	20:		*8		и	
313	ø	1/4 C2	Pertolite	0.26	0.32	0.68	0.00	0.00	6.63	1.34	01.0	25	12.27	,			
314	· Ψ	1024	Pertolite	0.96	1.18	1.06	00.00	0.0	19.0	1,67	ं उट	23	2,15		100		~ a
315	Yo	1015	Pentolite	0.97	1.19	3.06	0.00	0.0	0.76	1:76	0.20	: 12	3.14		, ,	2~	
376	ę	101	Pentolite	0.98	1,20	1.06	0.0	0.0	. 99	1.68	0.16	æ	3.31		=		
317	, e	1013	Pentolite	1.10	1.35	1,10	800	00.00	61.0	1.60	0.16	(3)	2,28	,	,		· ·
318	017	697	TAXI	· 4.0	1.0	1.59	%.0	°.0	0.87	2.64	0.08	23:	- 1		6		
319	04,	969	TALL	1,0	μ.0	1.59	0.00	00.0	0.81	2.53	0.15	83	^	4.			
88	ή,	505	Pentolite	5.07	6.21	18.1	0.0	8.0	0.95	3.03		었	9.89				
321	14	ч	C-4 (12.55)#	27	27	3.00	0.00	0.0	2.95	4.25	0.42	28/	54.3	1.95	1,50	27.	60.7
322	1,1	2	c-4 (12.55)#	21	27	3.00	0.00	0.00	2,16	, ,	94.0	39	9.89	2.25	4.60	O [‡] ſ	73.0
323	14.1	ន	C-4 (3.00)#	27.	27	3.00	0.00	0.0	2.30	4.50	14.0	&	9.09	2,31	4.50	30	77.8
324	17	Ħ	C-7 (3.00)#	27	27	3.00	0.00	0.0	2.20	4.20 E	0.52	30	47.9	2.20	1,30	ಜ	52=6,
325	1,1	31	C-4 (1.50)#	27	27	3.00	00.0	0.0	1.40##	1.50	0,53	 39	63.9		.,		,
356	, T [†]	139	C-4 (1.50)#	27	2.2	3.00	0.0	8.0	1.30#	4.50	0.39	88.	59:1				
327-	1,1	. ۳	Dynamite (12.55)#	54	36.8	3.32	0.0	0.0	2.30	2.00	94.0	82	81.8	2.24	5.15	8	89.3
328	1.	77	Dynamite (12.55)#	54	36.8	3.32	0.00	8.0	2,10	5.00	0.51	ટ્ટ	72.2	2.16	5.10	.#	79.5
άχ	41	ដ	Dynamite (3.00)#.	54	36.8	3•32	0.00	00:00	2.30	4.65	0.57	 ₽	68.7	2,36	4.67	34	=73
330	41	13 ,	Dynamite (3.00)=	. 54	36.8	3.32	0.00	0.00	2.36	4.87	0. 7	32	.73.4	2.45	4.87	35	83.7
E ·	ickmess	of cve	Thickness of everburden (feet).	##	Base slab exposed by shot.	sed by	shot.	, 				**					

		 L.		.,	1.634	, -					, , ,			· •	_				٥	 							-			
	"	: ŞVt CU FT	;; Ч.	w	7	,		ZI†		.0	,	*.			15¢	% 1	1,120	1,310	4,270		1,310	6,180	8,800			ŀ			8,700	
	TRUE	α _t DEG		<u>.</u>			33	31			L				∮ 0†(\$2t1	9	ç	ㅋ		5	- ≠	6	L	"	ำล			E.	<u> </u>
		ſŧ FT	, ·		2,000€		8,55	8.60	,	in.	٠.				5.50¢	905.9	02.41	15.00	23.00		16.40	32.80	34.30						32.60	32.60
NSIONS		đ _t	,		0.13¢	0.10	3.65	3.55					o		ø25.0	0.524	00.4	8.	2.60		4.30	8.60	01.01	. <u>.</u>					9.50	9.50
CRATER DIMENSIONS	ş	, Va CU FT			9.79	93.7	419	391	. 395	539	8114	531			989	1,040	: 270 ÷	8	2,010	37,070	38	3,300	3,600	7.51	. 8.81			o o	4,000	4,000
	ENT	α ₃ DEG			34	84	33	31	27	58	35	38	. 26.	ĸ	ş	742	ħŻ.	33	Q.	710	35	35	&	93	30	%		56	-	-
	APPARENT	°Б Г			44.0	94.0	0.61	0.8°	0.71	0.82	0.87	16.0	0.24	0.24	16.0	0.95	0.70	8	9	3.8	ī. 8	8.8	1.60	0.22	0.30	0.26		0.29	0.39 0.39	0.1.0 8.13
	,	12 F∓	L.		8.4	5.30	8.55	8.60	8.70	9.25	9.0	9.6	2.96	3.10	10.50	00 टा	8.30	8	18.50	39.00	8.70	19.00	19.80	2.25	2,33	3,42		3.40	3,40	3.40
		da FT	(1		1.32	1,42	3.36	3.50	28.4	7. AC	5.85排	5.90#	1.22	1,20	3.30	3.42	3.50	3,40	6.70	15.00	3,30	6.70	6,10	ر 1.00	1,10	1.40		1.39		
. П	Z.	ر کې	(Continued)		0.0	8.	0.0	0.0	°.0	٥ . 0	8.0	0.00	-0.13	-0.13	-0.13	-0.13	41.0-	41.0	-0.15	0.15	-0.18	-0.19	22.0	-0.24 -0.24	-0.24	-0.26		92.0-	92.0	92 0 0 0 P
CHARGE	POSITIO	2 FT	Sand		0.0	0.0	00.00	00.00	0.00	00.00	0.0	8.0	-0.21	0.21	0.85	-0.85	#8.0	₹ 9	-2.01	-4.63	-1-08	-2.50	-3.00	-0.25	-0.25	-0.41		-0-41		
•	۰	×	rired in		3.32	3.32	6.34	6.34	6.34	6.34	₹°-9	6.34	1.59	1.59	6.34	6.34	6.00	œ . 9	13.68	34.20	9.00	13.68	13.68	1.06	1.06	1.59		1.59		
4		NT LENT	: Shots		36.8	36.8	256	256	256	256	256	256	0.4	0*1	\$2e }	526	216	216	2,560	000,04	21.5	2,560	2,560	1.19	1.20	0.4		0.4		0 8
EXPLOSIVE DATA	CHARGÉ	WEIGHT LB	ja ja	ii.	去	45	. 256	256	256	256	256	256	0.4	0.4	526	256	216	177	2,560	000,04	177	2,560	2,560	76.0	96.0	0.4		4.0	4.0	2,560
		EXPLOSIVE TYPE		(Continued)	Dyramite (1.50)#	Dynamite (1.50)#	TNT (12.55)#	TWI (12.55/#	TIVI (6.35)#	TINT (6.35)#	TWT (3.13)#	TMI (3.13)#	JNJ	ŢŊŢ	TWT (3.13)#	TNT (3.13)#	TINI	Pentolite	INI	TALE	Pentolite	INI	TAIL	Pentolite	Pentolite	IMI.		TAT	1	olite
	SHOT	NUMBER			8	21	5	9	8	6	14	1.5	669	002	76	17	6-組	IE-9(A)	1E-7	日-2	图-8	1E-7	邢-6	201	1016	707		702	702 班-5	702 IIE-5 1/4 03
	1000	NO.		Dry-to-moist sand	14.	14	11	11	4.1	11	14	141	04	у	11	1. 1. 1.	2	2	7	7	2	2	2	9 :	9	017		9	9 2	
	TEM	0		Drý-	331	332	333	334	335	336	337	338	339	340	347	342	343	344	345	346	347	348	349	350	351	352		353	353	354 354 355

Inickness of overburden (feet)

Base slab exposed by shot.

6 Crater dimensions of concrete slab

(15 of 24 sheets)

	"			EXPLOSIVE DATA	4		CHARGE	GE) -			CRAT	CRATER DIMENSIONS	SIONS			J
TEM	0 EQ	SHOT		CHARGE	*		POSIT	NOI		AF	APPARENT				CTRUE	Œ	
o Z		UNBER	TYPE	WEIGHT LB	LB-TNT EQUIVA⊾ENT	LB ¹³	Z FT	' ہ	, da FT	fa FŢ	h _a α FT DE	α _a DEG CL	v _a //	đ. FT	f FT	αt DEG	vt CU FT
					Shots 1	Fired in	Sand	(Continued)	3)							ب ن-دٍثٍ	
ά	Dry-to-moist sand	\sim	Continued)		53									,			
357	9	1/2 0/1	Fentolite	0.56	0.69	0.88	T†*0-	74,0-	य: म	2.26	0.19 30		7.59			-	
359	9	1020	Fentolite	96.0	2.18	1.06	-0.50	-0-47	1.20	2.28	0.29 31		8,18			-	
359	9	1618	Pentolite	0.97	1.19	30.1	-0.50	-0/47	1.27	2.57 0.20	-	32 1	१० टा				
360	日日	距-10	TANT	216	216	6.00	-3.69	-6.50	5.50	11.30 0.80	0.80	0 860		6.30	18.60	6	2,600
361	2 元	至-10(引	Pentolite	177	216	6.00	-3.00	-0.50	1.10	9.60 1.00	00 70	0 520		5.50	16.70	9	1,460
362	7. 田	距-3	TAIL	2,560	2,560	13.68	-6.79	-0.50	10.80	20.50 1.20	-20 34	0,6,640		∞.11	22,00	£†	7,580
363	6 1,	1/4 06	Pentolite	0.26	0.32	0.68	-0-95	-0.72	1.43	2.02 0.28	.28 30		6.43	9.		_	
ďξ	/تر 9	1/2 %	Pentolite	0.54	0.56	0.87	-0.80	-0.92	1.37	2.44 C	0.31 32		3				
365	,T	1/4 04	Pentolite	0.26	0.32	0.68	-0.63	-0.93	1.04	2.00 0.22	.22 31		्रं हैं।				٠
366	(T) 9	1/2 511	Pentolițe	. 0.55	0.67	0.88	-0.82	-0.93	1.85	2.50 0.34	.34 45		10.96		0	H	
367	~	1/2 013	Pentolite	0.55	0.67	0.88	-0.82	-0.93	1.81	2,660	0.20 37	97	12.67			-	
88	는 아	1321	Pentolite	96.0	1.18	1.06	-1.00	رځ. د.	1.41	2.87	0.24 35	٠.	15.28				٠
366	,д Э	1/2 010	Pentolite	0.55	0.67	0.88	-1.23	-1.40	2.19	2.76 0.17	.17 60		15	. ,		-	
	,त ,	1/2 012	Pentolite	0.55	2.67	0.88	-1.23	-1.40	1.87	2.71 6.34	34: 38		14.28			-	
371	된 《 9	325	Pentolite	0.95	1.16	1.05	-i.49	-1.42	1.51	2.73 0	0.33 37		14.86				ч
372		1/4 C5°	Pentolite :	0.26	0.32	0.68	-1.20	-1,76	0.31	1.64 0	0.23	_	1.15	J		-	
:373	6 Ľ	1/2 c6	Pentolite :	0.55	0.67	0.88	-1.59	-1.81	95.0	2.09 0	0.39		3.84	1 .!!	,		
37.4	70 0	1/2 08	Pentolite =	55.0	0.67	0.38	199T-	-1.36	1.15	1.69 0	0.24 37	_	10.02				
3	/д 9	50 ≥/t	Pentolite	0.55	0.67	0.88	-1.54	-1.86	2.17	2.58 0.28	.28 51	"	14.72			-	
376	, jo	1023	Pentolite	96.0	1.18	90.1	-2.01	-1.90	0.41	2.41	0.30		2.81				
377	, п	1/4 08	Pentolite	0.26	0,32	0.68	-1.93	-2.94	05.0	1.84	83		2.19			-	
		3 6			Shot	Shots Fired	in Moist Loes	t Loess					,,		-		
378	39	3.4		0.5	0.5	0.79	00.00	.0°0	0.20	0.90	0.08 34		0.34	0.62	0.95	143	0.73
373	39	SY.		ِچِ ″ 0.5	c.5	62.03	0.00	0.0	0.28	ο ότ.τ	0.04 22		0.73	0.75	1.12	25 :	1.18
88	<u>ي</u>	1,9	* *-D	1.0	1.0	1.00	0.00	0.00	0.56	1.20 0	0.02 15		1.01	0.81	1.20	, _† 7	1.10
381	.39	35	7 2-1	1.0	1.0	1.00	0.00	0.00	0.53	1.250	1.25 0.10 -23		ò.35	0.79	1,40	32	1,46

			_		_			_					,		н							11		_			_		η,		_
-	8	* t	14 00	·	96.9	T†*9	37.78	04.9	13.8	η•τι		•		ž; ()	Apr 74.14	,		5.89	92.9	19.6	17.1			8.63	6.81	.8•61	20.3			, 20 . 6	25.7
	TRUE	عوار	DEG	•	જ	51	28	94	34	54			,		. T			27	ťŚ,	Ľή	7,4			45	8	61	, 9th	,,		36	C †
Ť.	F	" ≠ [ī	*.	2.25	2,00	1.70	2.00	2.75	2.25	٠				,		ÿ `	2.00	1.85	3.00	2.50		•-	2,00	1.50	2.50	2.75			2.50	3.00
SNOIS		÷	1		1,40	1,47	1.21	1,33	2.03	2.07				·	1			1.73	1.73	64.2	2.52			2.28	2.23	2.99	3.05		0	3.62	3.52
CRATER DIMENSIONS		٧٩.	CU FT		1,17	3.93	2.31	3,41	8ó * 9	5.84		-			ii i		,	2.70	1.54	3.7	5.50				2.38	2.85	2,22			1.97	1.12
S	ΪΝΤ	α,	DEG		27	Ŕ	147	8	50	28			-					-81	23	17	7,12		°.,		3	37	સ્		·	37	88
	APP ARENT	ha	F		0.27	οτ. ° 0	್.0	0.07	0.20	0.15							11.	0.10	ω.٥	0.09	0.15				0.09	0.15	0.11			ó.15	51.0
	4	. ra	FT :	7	2,00	2.00	1.50	2,00	2.20≳	2,25	8.00	10,00	9,50	8.00	7.50	6.24	8.75	2,00	1.75	3,20	2,25	9.75	8,92	3.00	1.50	2.25	2,60	7.50	9.50	2.00	1.35
		da.		inued)	1.20	0.93	09.0	0.35	0.72	0.65								0.31	0.35	0.33	0.58			-0.025	0.70	0.20	0.13			0.19	0,40
Ë	X.	٧̈		Ioess (Conti	-0.50	-0.50	-0.63	-0.63	ω.τ-:	-1.00	-1:05	-1.05:	-1.05	-1.65	-1.05	-1.05	-1.05	-1.26	-1.26	-1.5å	-1.50	-1.58	-1.58	-1.89	-1.89	-2.00	-2.00	-2.10	-2,10	-2.50	-2.50
CHARGE	POSITI	2 ET	_		-0.50	-0.50	-0.50	-0.50	-1.00	-1,00	-4.20	-4.20	-4.20	7.20	-4.20	-4.20	-4.20	-1.00	-1.00	-1,50	-1.50	-6.30	-6.30	-1.50	-1.50	-2.00	-2.00	-8.40	-8.40	=2:50-	-2.50
	,	¥		in Moist	1.00	1.00	62.0	0.79	1.00	1.00	4.00	00.4	۰.00 ئ	4.00	4.00	00.4	7.00	0.79	0.79	1.00	1.00	7.00	00.4	0.79	0.79	1.00	00.1	7.00	7.00	1.00	1.00
4		LB-TNT Y		Shots Fired	1.0	1.0	0.5	0.5	1.0	1.0	49	₽	- ₹ †9	₽\$	₩,	ф	4,6	0.5	0.5	1.0	1.0	54 Jan 19	₫	. 0.5	0.5	1.0	0.1	₹.	₩,	1.0	1.0
EXPLOSIVE DATA	CHARGE	WEIGHT LB		:	1.0	1.0	0.5≈	0.5	1.0	1.0	45	も	19	45	45	₫	75	0.5	0.5	1.0	1.0	45	, 15	0.5	6.5	1.0	υ.τ	479		° 1.0	1.0
3	10,100	TYPE						**		,		vi			11						я.		-	,		**	41		¢		
				ij	4-0	4-0	.4	7- Ω	Q-1	C-7	TATE	IMI	EMI.	TMI	TMI	TML	INI	÷	컁	₹ - 0	† -0	TALL	TALL	, 1 -0	† 1-0	4-0 	7.0	INI	IME	:† :-:	4-5
	SHOT	NUMBER			23	27	, t.	52	54	56	B-13	B-14	c-21	C-22	C-240	c-28	C-30	35	7.7	22	23	3-15	3-15	50	54	13	21	: A-7	B-12	16	17
	ITEM SOLIDOF				36.	- 39	39	39	. 68	39	8	80	8	8	8	8	8	39	39	39	39	8	8	i 39	39	39	95	8,	30	-6£	39.
	ITEM.	o N			382	363	384	385	386	337	338	389	3ĝ0 1	391	365	393	364	395	356	357	398	399	8	101	405 1	£0.4	701	405	904	154	-SC+
_			_																												

\$. Pove original ground surface.

original ground surface.

tal'amon lowtie

(18 of 24 sheets)

			F -	EXPLOSIVE DATA	, A		CHAF	RGE				ર્જ	CRATER DIMENSIONS	NSIONS			
TEM	֖֖֖֖֖֖֖֖֖֝֝֝֝֝֝֞֝֝֝֝֝֝֝֝ ֖֖֓֞֞֞֞֞֞֞֞֩֞֞֩֞֞֩֞֞֩֞֞֩֞֞֩֞֩֞֩֞֩֞֩	SHOT		CHARGE	M		POSITION	NOIL		¥	APPARENT	F			Ŧ	TRUE	
Ó	NO. SOURCE	NUMBER	EXPLOSIVE TYPE	WEIGHT LB	LB-TNT EQUIVALENT	LB13	Z FT	ر ب ب	da FT	r _a	ь Г	a, DEG	va cu FT	d. F	- E	α _t DEG	VI :: VI :: CU'FT
					Shots Fired	à	Moist Loess		(Continued)	- T	┢	-				7 : =ï•	
_{1,36}	39	₫	† - 2	0.125	0.125	0.50	-2.50	-5.00	a .					See Ta	Table 2	S S S	(Camouflets)
137	39	35	1-0	0.125	0.125	0.50	-2.50	00*5-						See Tel	Table 2	()	(Camouflets)
138	33	- 8 2	. C−†.	8.0	8.0	2.00	-10.0C	-5.00			-	.75		See Tal	Table 2	Camp.	(Camouflets)
439	39	83	1 -5	8.0	8.0	2.00	-10.00	-5.00				-		See Ta	Table 2	(Camp	(Campuflets)
9	36	Н	1-9:	1.0	1.0	1.00	00±9-	00*9-	-0.028	3.00			"	ki əəgʻ	Table 2	(Camp	(Camouflets)
111	39	2	η-υ	1.0	1.0	1.00	-6.00	-6.00	-0.058	7.00		ч		See Tall	Table 2	C SEE	(Camourlets)
244	39	7	C-1	1.0	1.0	1.00	-6.00	-6.00	\$40.0-	00.4		7		See Tal	Table 2	(Camp	(Campuflets)
£ 1	_	3	y †-0	1.0	1.0	1.00	-8.00	-8,00	-0.018	4.50				aT ee≳	Table 2	(Camor	(Cameuflets)
7	œ	-1	1-c	1.0	1.0	1.00	-8.00	2.8.∞	-0.028	00.4				See Tal	Table 2	(Camp	(Camouflets)
445	33	ż	C-4	7.0	1.0	1.8	-10.00	-10.00	-0.018	3.50	0	<u> </u>		See Ta	Table 2	10 J	(Camouflets)
944	33	9	, †−5	1.0	1.0	1.00	-10.00	-10.00	.,					See Tel	Table 2	3	(Camouflets)
Ę,	33	89	_ †•0	1.0	1.0	1,00	-14.00	-14.00	0.0	1	L		ο	See Tal	Table 2	(Camo	(Camouflets)
			ü		Sì	ots Fi	Shots Fired in Wet Silt	t Silt				<i>-</i> ,,					, ,
844	4	E1-51	₹ 3	27	27	3.00	+1.85	+0.62	0,40	3.00		5	4.17				
6 1	‡	E1-52	1- 0	27	27	3.00	+1.85	+0.62	0.27	2.85		5	2.46	'i'	es Sie		
¥20	74	<u>F</u> 1-53	C-4	27	27.	3.00	+1.85	+0.62	0.30	3.50		5	5.08		8		
, 45 <u>1</u>	T	E1-48	Dynamitet	54	35.8	3.32	-1.50	-0.45	3.60	7.20	9.80	36	280	5.00	7.50	±5	. 361
152	7.	E1-49	Dynamite**	54	35.8	3.32	-1.50	-0.45	4.50	8.00	8	37	452	5.20	8.50	83	548
153	∄	E1-50	Dynamite**	54	36.8	3.32	-1.50	-0.45	5.30	8.30.	1.05	37	504	5.30	00.6	62	634
454	† ‡	E1-58	Dynamitet	54	36.3	3.32	-1.50	-0.45	3.70	6.35	0.62	36	177	۰ OL ۴	7.00	払	362
455	3	E1-59	Dynamīte t	54	36.8	3.32	-1.50	-0.45	3.60	6.75	0.50	36	223	. 1.80	05-1	54	422
₄ 56	3	E1-54	**1-0	- 12	27.	3.00	-1.50	-0.50	2.8	7.50	1.00	33	362	80	8.50	33	528
457	1	E1-55	C-4+	12.	27	3.00	-1.50	-0.50	3:68	6.50	0.80	17	82	5.00	7.00	33	336
458	‡	E1-56	G-4+	27	27	3.00	-1.50	-0.50	%. [†]	7.00	9.08	¹ μ1;	56. 10.	5.18	. 00.8	8	101
459	4	B1-57	C-1;**	27	27 1	3.00	-1.50	-0.50	5.30	8.25	0.75	33	437	5.50	9.00	33	. 568
1	C+ommod		† Thetemod		S mound		wind coin	الد.			,	ĺ	,				

Samue fertation and S

	(A
	-
7	
ŭ	
₹	
3	
đ	
3	
_	
4	
υ	
3	
ij	
4	
	•

19 of 24 s

	.,	,			EXPLOSIVE DATA	4		CHARGE	RGE				R	CRATER DIMENSIONS	SNOISN	3 41			_
	TEM	TEM SOUNCE	SHOT		CHARGE	*	7	LISOH	NOI		AF	APPARENT	ΤN			T	TRUE		-
	ó		NUMBER	TYPE	/ WEIGHT	LB-TNT EQUIVALENT	E 133	Z FT	۰	da FT	ra FT	ha FT	α _a DEG	va CU FT	dt FT	ı, L	α _t DEG	vt CU FT	
					Ľ.	Shots	Shots Fired	With Shap	Shaped Charges	, g						.,	n a		Ť
,	ប់		,								ß	-	ŀ						_
	<u>9</u>	ĭ	19	Treat	328(53.8)+	321	5.04	+1.80	+0.36	.s.	2.88		53					P .>=	
	191	1	8	TWIL	128(53.8)*	328	5.04	+1.80	+0.36	3.10	3.50		64						-
	∓62	1	21	TMT	128(53.8)*	128	5.04	+1.80	+0.36	2.10	3.75		37						Ċ
	1, 63	1.	22	TWT	128(53.8)*	9टा	5.04	+1.8	+0.36	3.10	3.50	-	64						
,	\$,1	2	Amatol ^B	242(50)	54544	6.23	+2.23	+0.36	3.50	6.35	Г	36						
o	465	1	88	Ametol ^B	242(50)♦	, 242 44	6.23	+2.23	+0.36	5:00	7.50	•	14.)			.,
	99	7	Ř	Ametol ^B	242(50)♦	\$45 44	6.23	+2.23	+0:36	4.50	6.75		1.4						_
	194	1	æ	Ametol ^B	242(50)♦	545 44	6.23	.+2.23:	+0*36	2.66	6.75		31.	<i>,</i> .					_
	88 T	٦ ;	33	Ametol ^B	242(50)+	44273	6.23	+2.23	+0•36	2.66	6.75	-	31	2			.,	. "	_
	691	1 ,	ĸ K	TML	1,496(75)+	96† * T	11.44	43.90	+0-34	4.50	6.37	 "	24						· · · · ·
	pt.tq	1	33	TWT	1,496(75)*	96 [†] (1	ग्न-दा	43.90	+0.34	3.75	5.50	_	14					0	. 31
	ĽŦ	7	₹.	TMT	1,496(75)	3,496	74.11	+3.90	+0-34	01.4	6.00	-	1.1						_
	1,72	1	35	Ametol ^B	1,496(75)*	1,496 44	11.44	+3.75	+0.33	3.66	2.00	:	13						
	£7.	-1	36	AmstolB	1,496(75)+	1,49644	17.14.	+3.25	+0.28	4.00	6.25		· g						_
	72.77	۲	37	Amatol ^B	2,790(70)+	2,79044	14.08	+3.40	40.24	7.33	11.75		39:						_
	475	1	11	PAG	300			+1.50		4.31	99.9		O [†]						_
	92.4	1	4.5	PAG	300,			+1.50		, LT*1	7.50		37						-
	Ļ		1	TWT	51.8(47)♦	== 51.8	3.73	-1.00	-0.27	4.75	8.25	-	38						_
"	478	1	9	TMT	51.8(47)*	51.8	3.73	-2.50	-0.67	5.66	9.25		39						
	<u>ε</u> 2	1	11	TWI	275.6(50)	275.6	6.51	-8.00	-1.23	9.00	16.88		36		7				
	<u>8</u>	7	6	TWIG	275.6(50)♦	275.6	6.51	-9.50	9¶-t-	9.00	17.50		35		*	,			-
	ള	1	18	Ametol ^B	85-44(48)◆	95.141	1,40	-7.50	-1.70	4.75	9.62		35			•			_
	8 1	7	70	TMT	128(53.8)+	128	5.04	-9.50	-1.88	8.00	15.00		36						-
	ξξ. (Εξ.)	1	8	Ams tol ^G	275.6(50)+	275.644	6.51	-12.50	-1.%	8.50	18.25	_	33				ı.		-
46	ಕ್ಕೆ	7	Я	TIME	275.6(50)+	275.6	6.51	-12.50	-1.92	9.00	18.75		34 .		,,			-	_
	£	٦	25	TWI	275.6(50)+	275.6	6.51	-12.50	-1.92	10.00 17.50	17.50		37			7		,	-
	Note	bat e	icates B	Note: Bindicates British Bomb; Gindicates German Bomb	cates German Bo	*	r cent	Per cent of charge weight to total bomb weight.	e weigh	t to tot	al bomb	weigh	نډ	++ Amstol	and III	T are	ons1de	Amstol and IMT are considered equal.	

1	9		EXPLOSIVE DATA	٨		CHAR	ige			<i>.</i>	R.	CRATER DIMENSIONS	SNOISNE		ļ. 		Г
2			CHARGE	*	:	POSITION	NOI		*	APPARENT	F.Y.	-		-	TRUE		ř.
3 1	NUMBER	TYPE	WEIGHT LB	EQUIVALENT	₩'3 LB¹3	Z FT	ې د	da FT	ra FT	ha FT	α, DEG	va CU FT	dt F7	<u>- F</u>	ο G DEG	Vt CU FT	
			·	Shots Fired	with Si	Shaped Cha	Charges (C	(Continued)	څ							20.	
	(Continued)									n"	-						Г
⊣i	13	TWE	275.6(50)+	275.6	6.51	-12.50	-1.92	∞.11	18.25		38						
	77.	TIVE	275 .6(50)♦	9.575	6.51	-12.50	-1.92	18.00	18.00		38		4***				
ᄀ	2	TNT	51.8(47)+	51.8	3.73	-7.20	-1.93	5-45	10.50		35	0	93 i			·	
୷୲	3	${ m TNT}^{8}$	4(24)8-15	51.8	3.73	-7.20	-1.93	7.33	10.50		142:		ļ,	Å"	,		- 2
~	126	INTB	128(53.8)+	328	5.04	~10.00	1.94	6.00	14.00		84		,,		Ŀ	<i>"</i> 。	
⊣	ŢŢ.	TNT	1,102.3(50)+	1,102.3	10.33	-20.00	46.L-	17,00	28.50		34						Π
~!	7,7	PAG	133			-10.00		7.00	14.75		34		,,,				<i>3</i> 4.
~1	1	PAG		11 4		-8.00		9.00	12.00		36 cd		·				
пI	, 53	TWE	*128(53.8)*	ध्य	±0.₹	-10.00	-1.98	9.00	34.00		82			L	_		
٦!	80	TWIL	128(53.8)+	डटा	5.04	-10.00	-1.98	8.00	15.00		36			.: .:	"	.,11	
ᆵ	38	PAG	0.125			-1.00		0.75	1.50	,	35				_		વા
H.	16	TIME	♦(ηη)≤8η	÷85	7.86	-16.00	-2.04	9.00	2i.00		32	0		3.0			
	н	TINT	35.3(32)♦	35-3	3.28	-7.00	-2.13	2.75	8.00		53						
7	, 2	PAG	33			-7.00		4.70	9.00		35		36 ¹				
ᆲ	33	PAG	υ.ο			-2.25	ii	1.50	3.00		35		3			;; r 8	- 11
~!	5	TML	₹1.8(47)	51.8	3.73	-8.50	-2.28	4.33	10.25	. "	ξĶ.			٥		a	
ӈ	t-3	PAG	166			-13.00		9.00	15.00		38						ů
ᆲ	15	TINT	275.6(50)+	275.6	6.51	-25.00	-3.38	6.20	13.50		33				L	ì	
-41	4	TWIG	51.8(47)♦	51.8	3.73	-16.00	-4.29	-1.66§	4.75	i	62						× ·
ą	_								٥		٦	,			,		"
17	г	TATE	7-0	1.0	1.00	0.0	0.00	0.69	0.96		0	8				~	
뒤	τ̈́	's TINE.	0-1:	1.0	1.00	-1.00	-1.00	94.0	2.41			,	2.00	2.41			
17	Я	TMT	1.0	1.0	1.00	-1.00	-1.0	0.58	2.08		13-C	870	2.17	2.12			
[귀*	13	TNT	1.0	1.0	1.00	-1.00	-1-00	0.83	2.12		ှ ် စ		2.33	2.12			
17	3	TINT	1.0	1.0	1.00	-1.50	-1.50	0.50	2.50,				2.25	2,50		6	
77	8	TINT	1.0	1:0	1.00	-1.50	-1.50	0.50	2.50				2.50	2,62			
٩					١.						c/						ŀ

§ Above original ground surface. B indicates British Bomb; G indicates German Bomb. (21 of 24 shipets)

	9	EXPLOSIVE DATA	A		CHARGE	3. ₩		د،	"	E.	CRATER DIMENSIONS	NSIONS			٥
	CHARG	ш	š		POSITION	NOI		¥	APP ARENT	-		å	Ť	ŤRUE,	¢:
TYPE VEIGHT	WEIGHT		LB-TNT EQUIVALENT	F. 3	2 FT	ر ۲	da FT	r] FT	ha FT	α _a DEG	Va CU FT	፥ ሳ FT	ft FT	ος β DEG	vt CU FT
			Shots Fired with		Shaped Cha	Charges (Co	Continued	٥	-				6	,	
						ı		",		_				,,	
8.0	8.0	Г	8.0	2.00	-3.00	-1.50	2.00	6.00		 		3.67	5.50		
1.0	1.0		1.0	1.00	-1.60	-1.60	79.0	2.58	0	-		2.75	2.58		
1.0	1.0		1.0	1.00	-2.00	-2.00	0.50	2.50				3.00	2.75		15
1.0	1.0		1.0	1.00	-2,00	-2.00	,0.33	29.8				3.58	2.75		2.20
1.0	1.0	_	1.0	1.00	-2.50	-2.50	0.25	2.50	u.						
1.0	1.0		ر ٥٠٦	1.00	-2.50	-2.50	0.83	1.50				4.50	2.25		:
1.0	1.0	-	1.0	1.00	-2.50	-2.50	0.17	1.75			.6	3.33	, 1.62		
1.0	1.0	_	1.0	1.00	-3.50	-3.50	3	i e	ŭ			00*1	7°62		
0.1	1.0		1.0	1.00	-3.50	-3.50	-6					4.50	1.50	0	
fras clay loam	THE	_	,		,								.7	-	
1.0	1.0		1.0	1,00	00.00	0.00						79.0	26.0		
1.0			1.0	1.00	0.00	0				-		0.50	31.1		
1.0	1.0		1.0	1.00	%.0	8						05.0	1.00		6
1.0	1.0		1.0	1.00	-2.00	-2.00	,				4	3.00	2.83		,
1.0	1.0		1.0	1.00	-2.00	-2.00						3.17	3.25		
7, 0,1	,		1.0	1.00	-2.00	-2.00	i		σ	_		3.33	3.00		
1.0	1.0	_	1.0	1.00	-3.50	-3.50	.]	1			- -	4.50	2.71	"	
1.0	1.0	_	٥٠٠٦	1.00	-3.50	-3.50						it.75	2.75		, ,
1.0	- 1	_	1.0	00.Ļ	-3.50	-3.50			_	_		1.50	2*81		 ti
		_	6 4								A				
8.0	8.0		8.0	2.00	-4.20	-2.10		06*4							
8.0	9.0		8.0	2.00	-4.20	-2.10		08° †						-	
8.0	8.0		3.0	2.8	-4.20	-2.10	,	01.4			, ,	-			
216	216	_	216	6.00	-12.60	-2,10		13.50			,				
1,000	1,000		1,000	10.00	-21.00	-2,10	6.20	18.25	1.20	30	2,300		9		. 4
1,000	1,000		1,000	10.00	10.00 -21.00	-2.10	4.30	20.75	1.10	19	3,400		,		,

					EXPLOSIVE DATA	¥		CHARGE	1GE				> CRATER DIMENSIONS	DIMENS	SNO	n	ó	
٠	TEM	1000		i	CHARGE	*		FOSI	NOL		AP	APP ARENT				TR	TRUE	
, 0	ġ			TYPE	WEIGHT LB	CB-TNT EQUIVALENT	, _E	Z FT	ې ^د	da FT	ra FT	ha da FT DEG	v₃ s (≰èè ∈T	, F	dt F7	- <u> </u>	OEG	V ₁ CU FT
						Shots Fired	with S	Shaped Cha	Charges (Co	(Continued		_	<u> </u>	\vdash		9	 	
ິລ.	Sandy	y clayey	811t (C	silt (Continued)												-	_	
2 2 3 3	535	5	H-11	TMI	49	64	4.00	Ott.8-	-2.10		10.75	<u> </u>				11.0		
	536	5	B-13	TMI	79	₹9	4.00	-8.40	-2.10		9.25					43		
	537	5	B-14	INI	179	₹9	1,.00	-8.40	-2.10		9.65					12.4		
	538	5	B-15	TIVE	499	1 9	4.00	-8.4o	-2.10		9.75			_;		.0		
٠,	539	5	B-25	TRE	516	216	6.00	-12.60	-2.10		10.75		-		L			
	540	. 5	B-26	TWI	1,000	1,000	10.00	-21.00	-2.10	9.30	18.00 1	1.80 16	2,590	0				
	541	5	B-32	INI	1,080	1,080	10.25	-21.00	-2.10		20.50					ı,	Н	
	542	5	B-33	IALI	₽	64	4.00	-8.40	-2.10		8:25							,
	543	. 2	B-34	TNI	₹6.	1 5	4.00	04.8-	-2.10		05.9					-		-
	115	5	B-35	TMT	₹9	₹5	4.00	O+, 8−	-2.10		7.50			οŭ		u.	Н	
;; ;;=	545	5	B-36	TMI	8.0	8.0	2.00	-4.20	-2.10		4.00	_			,		1.0	
**	546	. 5	B-37	TNT	8.0	8.0	2.00	-4.20	-2.10	·	5.35						۰,	,
	547	2	B-38	TMT	8.0	8.0	2.00	-4.20	-2.10		5.25							
	548	5	B-39	TMT	8.0	8.0	2.00	-4.20	-2,10		4.25		_			o .		
	549	5	B-40	THE	8.0	8.0	2.00	-4.20	-2.10		5.50			۲				
	550	5	B-4.1	TML	8.0	8.0	2.00	-4.20	-2.10	52.V-	4.50	n.	11	- 1				
	Silty	sandy	clay	۰						, 				g ^{ing} :				.,13
	551	5	A-5	TNT	8.0	8.0	2.00	-4.20	-2.10		4.25							, c
	552	3:5	9-e	TML	8.0 =	8.0	2.00	-h: 20	-2.10	₽	4.80						-	
	553	. 5	A-7	TMT	8.0	8.0	2.00	-4.20	-2.10		04.4			, i			_	
	554	. 5	B-1	TINT	8.0	8.0	2.00	-4.30	-2,10		4.75		7.2				В	,
	555	5	B-2	TWL	8.0	8.0	2.00	-4.20	-2,10		5.35		ç—,.					ā
,	556	Š	B-3	TIME	8.0	8.0	8.8	-t-8	-2.10	"	5.25		,'					
	557	5	B-4	TAT	0.8 	8.0	2.00	.4-20 4-20	-2,10		5.25	-						
0	558	5	B-5	TNL	8.0	8.0	2.00		-2.10		5.50			_				
<i>,</i> ,	559	5	B-6	TAT	8.0	8.0	2.00	-4.20	-2.10		5.25	-					,	a
								Ì				Ì						

Table 1 (Continued)

2 2 at DEG TRUE = 12 후 급 va CUTET 2,640 α₃ DEG 33 APPARENT تا مي 34.25 13.50 22,10 23.50 9.35 4.65 8 8.75 8.95 11.50 & & 15.00 16.25 15.75 17.50 12.50 8.8 18.75 ᆵᆸ 8. % \$ L -2,10 -2,10 -2,10 -2,10 -2.10 -2.10 -2,10 -2.10 -2.10 -2.10 -2.10 -2.10 -2.10 -2.10 -2.10 -2,10 -2,10 -2,10 CHARGE POSITION 8.7 -12.50 -21.00 9.40 -16.80 -15.80 -51.00 -21.00 -12.60 Ģ-₹ -17.00 -16.90 -17.00 . z <u>F</u> w¹∶3 LB¹ु3 2.8 8. 6.90 8.8 2.7 4.00 5.00 ... 00. 6.75 6.75 6.75 9. 8.00 8.00 9.0<u>.</u>0 Shots Fired with 85 N LB-TNT EQUIVALENT 8.0 8.0 8.0 308 3 3 **3** 3 216 यूट 3,000 क CHARGE WEIGHT LB 8.0 8.0 512 512 512 512 516 1,080 **3 3** 64 64 216 88 88 8 4 51.2 3,300 EXPLOSIVE TYPE 50,550 Amato THE EE E INI É Ħ Ĭ, Į SHOT 9-15 A-10 A-20 A-27 Д

.

(23 of 24 sheets)

	7	e e	3	EXPLOSIVE DATA	٧.		CHARGE	3E	, y , y , y		17	CRATER DIMENSIONS	SNOISN			
TEM	TEMENIOCE	SHOT		CHARGE	*		POSIT	NO.		APP	APPARENT			F	TRUE	
Ö	1 2 2	NUMBER	TYPE	WEIGHT LB	LB-TNT EQUIVALENT	W. 5	Z : FT	_,	da FT	ra ha FT FT	α T DEG	Va.	dt FT	rt FT	αι DEG	vt cu FT
	·			21	Shots Fired with		Shaped Char	Charges (Co	(Continued							,
Vari	OUS SOLL	Various soils (Continued)	med)				,			e e		"			<u> </u>	1
585	5	A-30	50/50 Amatol	3,200			-31.00		7.50	31.00	17	7,030				
 586	5	A-31	50/50 Amatol	3,200			-31.00		8.00	24.00 0.60	50 17	615,4	e-			<i>Joi^{gt}</i> "
587	5	B-16	TWI	216 =	215	6.00	-12.60	-2,10		10.25						79
88	5	B-17	TALL	टांड	512	8.00	-16.30	-2.10		12,95				0		
589	.5	B-18	TALL	515	512	8.30	-16.80	-2.10		17.00					.,	
590	5	: B-19	TALL	5.5	5.2	8.00	-16.80	-2.10		16.00	· ;			,		
591	5	B-20	50/50 Amatol:	01/5			00.71-	., 1		19.50		F.				
592	5	B-21	50/50 Amatol	045			00.71-		,	17.00		·,				
593	5	B-22	50/50, Ametol	045			00.71-			15.00						
59	5	B-23	50/50 Ametol	O#:5		_	0C*LT-			17.25			ġ.			
595	5	B-24	TAKE	216	2.5	00.9	-12.60	-2.10		12.30		0.				
<u>Ж</u>	: 5	B-27	TALL	000,τ	ر بر	10.00	-21,00	-2.10	6.00	15.50 1.40	±0 56	1,675		, ,		
° 597	5	B-28	THE	1,000	د بز	10.00	-21.00	-2.10	9.60	16.50 0.50	52	2,130	a' '			. n
598	. 5	B-29	50/50 Amatol	1,080			-21.00	,		21.10	-					,
599	. 5	9-30	50/50 Ametol	1,080			-21,00			15.50				.,	%	
8	5	B-31	50/50 Amatol	1,080			-21.ॐ	- 2		15.50					 	n.//.
				į						_					,	
ч.					,		-							,		1
															1	
		,35,	: 1				5									
.,				1			3							,		
							,									, y
	"			11	5%										, "	ij.,
	н .										·	, a		3	J.	2 m"
							e.				٩			" ,		
											l					

															l	Į	
	d			EXPLOSIVE DATA	٧		CHARGE	3SE				P.	CRATER DIMENSIONS	NOISN	1.3		
ITEM	SOURCE			CHARGE	*		POSITION	NOL	e ·	Ā	APPARENT	۱	_	,	CAN	CAMOUFLET	ET
	2	NUMBER	TYPE	WEIGHT LB	LB-TNT EQUIVALENT	. ¥. 5	, T.	ر د	e T	ra FT	ha 5	ogo OEG	v _a cu FT	P _V	4 [<u> t</u>	۷ ر دں ابا
				1	Shot	Shots Fired	in Moist	t Clay								L	
ğ	33	8	π - υ,	1.0	υ":	1.00	-3.50	-3.50	-0.58**	3.50		27		2.35	2.26		71.17
ö Ö	39	61	rp	٠٠٠ ۽	٥•٦	1.00	00 * †-	-4.00	-0.19**	3.00		19	a .	2.30	2,38		大9
8	39	72	, 1- 2	1.0	1.0	1.00	-4-25	-4,25	-0.50**	00*1		21	9 0	2.10	2.30	8	5.87
₹	.39	62	†-0	1.0	1.0	1.00	05° h-	-4-50	-0,12**	3.50				2.20	2,18		5.79
ĝ	33	7,7	1 −0	0.5	0.5	0.79	95*5-	-7.00	-0.01**	3.50	0			1.81	1.50		1.58
8	33	65	7-D	1.0	0.1	1.00	-7.00	-7.00	-0.03**	3.00		H		2.09	2.22	3.50	5.38
5 9	,33 36	77	r-r	0.5	0.5	0.79	-9.13	-11.50	0.00	822				1.80	1254		Z¶*Z
8	39	18	r-p	0.5	0.5	0.79	-9.52	-12.00	00.00			_	(S	1.95	1.92	//·B	3,44
	<u>.</u> "				Shot	Shots Fired	i in Moist Loes:	t Loess				L				0	
\$	33	∄	†-∵	0.5	0.5	0.79	-2.18	-2.75	-0.67**	3.00		83		1.65	1.50	8	1.93
9	33	1,3	. t-7	0.5	0.5	°o.79	-2.50	-3.15	-0.28**	3.20	125	16	0	1.65	1.50	8.8	1,98
गु	33	67	† - ℃	0.5	0.5	0.79	-2.50	-3.15	-0.51**	3.00		25.		1.60	1.50	8	18.1
यु	-£	8	C-4	1.0	0,1 :	1.00	-3.25	-3.25	-0-48**	4.50	-	18	,	2.19	2,34		6.11
£ 7	33.	24	† - ℃	1.0	1.0	1.00	-3.25	-3.25	-0.55**	14.50		20		25,22	5,24	5.30	₩°9
† 10	39	6	. † - 5	1.0	1.0	1.00	-3.50	-3.50	-0.84** t.00	8° 1		28		2.34	2,30	5.25	21.9
615	33	9	7-3	1.0	1.0	1.00	-3.75	-3.75	-0.63*	8.4		†₹		2.52	2,40	4.50	13.7
919	39	77.	7	1.0	1.0	1.00	-3.75	-3.75	-0.45**	5.00		97	,	2,30	2,00	9.00	94*4
617	33	37	t-0	0.5	0.5	0.79	-3.00	-3.78	-0.36**	3.0		8		1.77	1.62	3.75	2,36
8 <u>7</u> 9	8	55	† - 2	0.5	0.5	0.79	-3.00	-3.78	-0.26**	3.00		76		1.74	1.68	3.50	2.74
g	33	댸	†- ⁻ 0	0.5	0.5	0.79	-3.10	-3.8	-0.26**	2.80		91	o	π.τ	1.72	2.00	2.76
હુ	33	12	j†-0	0.5	0.5	0.79	-3.10	-3.90	-0.17**	3.20		6		1.70	1.60	2.00	5,36
ଷ	83	П	†-5	1.0	1.0	1.00	8. 1	-h.00	-0.30**	00°†		टा		2.34	2.30	9.00	₩.5
8	18 2	13	η-·0	1.0	1.0	1.00	φ. ₄ -	o	-0.31**	4.50		ឧ		2.11	2.00	5.50	84*4
ଥି	39	R	70	1.0	0 . 1	1.00	-4.00	-4.00	-0.31***	2.25		22		2.59	2,50	9,40	7,62
<u>જુ</u>	33	38	t-⊃	4	0.5	0.79	-3.25	-4-10	-0.30**	3.00		17	*, "	1.56	1.52	2.00	681τ
જી	39	917	C-14	0.5	0.5	0.79	-3.25	-4.10	-0.27**	3.00	ű.	16		1.85	1.80	2.00	2,92
929	39	ਲੈਂ	C-4	0.125	0.125	0.50	-2.50	-5.00						7.00	1.05	"	166.0
:																	

** Above original ground surface ers correspond to Bibliography numbers. Tatle 2 (Continued)

(2 of 2 sheets)

v. cu FT

60.28 78.91 2.81

1.72

1.83

-0.02** -0.05** **10.0-0.01**

-6.00 -6.00 -6.00 9.89 8-8

1.00 1.00 1.00 90.1

1.0

킹 70 7-5 3-7

39 8 33

632

7

83 88

33

628

89

SHOT

ITEM SOURCE

0.4 0.4 0.4

0.4

33

635

2.38 2.28 2.70 2,42

5.46

07.01

2.70

5.69

2.32

4.00

CAMOUFLET <u>ئ</u> ي 5.13 CRATER DIMENSIONS ٦ <u>۲</u> Va CUFT α₃ DEĜ APPARENT ᄛᇉ e i da: FT ەر CHARGE Shots Fired in Moist Loess .10.00 10.00 2 FT 0.50 2.00 2.00 " W LB-TNT EQUIVALENT 0 0 0 0 EXPLOSIVE DATA CHARGE WEIGHT 0.125 0 0 0 0 0.0 EXPLOSIVE TYPE

			_		_	_		_	_	_	_				_	_		_	_
	8.69	8.10	6.98				-	В	i :					"					
	12	9.00		=	-									<u> </u>	"				
	2.56	2.52	2.40								.,	ŀ							: "
	2.55	2.50	2.43							,							,	/	
	_									,									
								_											
	3.30							.,											
	-0.01*		0.00																
	-10.00	310.00	-14.00		0	"				.,	к "								
	-10.00	-10.00	-14.00				·	"						(i	,,,				11
	8	1.00	1.00																
	7.0	1.0	1.0												•				
	1.0	1.0 -	1.0																
	4.	7-	-1								, ,								
	5 0-4	7-0 9	8				*.								_	7			
	7											13							•
	8	89	39			,JI				*.									
Ĺ	1	۱ م I		i I					1				. 1					- 1	

Table 3

esults of Crater Measurements in Frozen Grou

oec cuffT		y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	y	y
- L					
68.79 1.00 1.41 1.42 94.05	68.79 1.00 1.142 94.05 94.05 1.31 1.31 1.01 ter 87.07	68.79 1.00 1.00 1.42 94.05 1.31 1.01 1.00 1.00 1.06 3.06	1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00	1.00 1.00 1.00 1.42 1.42 1.03 1.03 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08	68.79 1.00 1.00 1.01 1.01 1.01 1.03 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
	1.04 1.13 1.28 5.65 1.16 0.99 Waterlogged cra 4.16 1.21	1.04 1.13 1.28 5.65 0.99 Waterlogged cra 4.16 1.21 1.29 1.20 1.41	1.04 1.14 1.28 5.65 0.99 Waterloggel cra W.16 1.20 1.20 1.20 1.20 1.20 1.20 2.7 3.0 3.1	1.04 1.13 1.28 1.16 0.99 Waterlogged cra 4.16 1.29 1.20 1.41 1.70 2.7 3.0 3.1 2.9 2.7 2.9 2.9	1.04 1.13 1.13 1.13 1.13 0.99 0.99 1.20 1.20 1.29 1.29 1.41 1.70 2.7 2.7 3.0 3.2 3.1 2.9 2.9 2.9 2.9 2.9 2.9 3.1 3.5 2.9 3.7 2.9 3.7
7.0- 7.0-	2. O O O O O O O O O O O O O O O O O O O	24.00 14.00 15.00 15.00 16.00 16.00 16.00 16.00 16.00	0.1.5 1.00		
19.51	19.51 0.38 0.38 20.04	19.51 0.38 0.38 20.04 0.488 0.483 0.50	19.51 0.38 0.38 0.02 0.483 0.483 0.560 2.65 2.65 2.65	19.51 0.38 0.38 20.04 0.488 0.483 0.483 0.56 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2	19.52 0.38 0.38 0.04 0.483 0.560 0.560 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65
262	293 294 1140 279	293 294 1140 279 10 10 19 82 82	293 294 1140 10 10 119 82 82 82 82 3 3	293 140 120 10 10 11 11 11 11 12 13 14 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	293 294 1140 10 10 19 82 82 82 2 3 3 4 4 4 4 7 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10
81 81	ଖ ଅ ଖ			646 23 3646 23 6546 23 655 24 25 655 25 26 655 25 26 655 25 25 655 25 655 2	

* Numbers correspond to Bibliography numbers.

_	_	_	<i>y</i>	EXPLOSIVE DATA	TA			- 10,				ď	CRATER DIMENSIONS	SNOW			
		-		المراد المراد المراد			CHARGE	<u>u</u>				- 1		2			
- 2		SHOT		CHARGE	*			NOIL		۷ .	APPARENT	LN:				TRUE	a`
5	NO. COUNCE	NUMBER	EXPLOSIVE TYPE	WEIGHT	EQUINALENT	. ™ 	z FT	ړ	da FT	ra FT	h _a FT	α _a DEG	Va CU F⊤	dt FT	F	at DEG	V _I CU FT
999	25	106	c-3	2.65			-1.0		1.9	0.4		_	25.0			"	
199	22	296	Coalite 7-S	c.85		4	-0.69				_	_					
668	23 ,	₽	Military C-3	00.1			-0.73		1.28	2.08			6.24				
699	22	277	60% gelatin	c-22	:		-0.45		0.79	1.17			1.36	,		#	6
019	25	278	60% gēlatin	0.22			-0.45		0.81	1.03			1.04				c ,
11/9	22	1,	60% gelatin	ZL11.0			-0.58		1,0	1.52			2.42	,			
672		115-R	Coalite 7-S	1.98			-0.95		1.82	2.56			18.48				
673	55	308	Coalite 7-S	0.66			-0.66		1.23	1.49			3.17				
479	ઇ	309	Coalite 7-S	99.0			99.0-		1.12	1.17			∌.88				
675	22	310	Coalite 7-8	99*0			99.0-	:	1.25	1.23		,	2.37				
929	52	11	Gelodyn l	0.425		-	-0.58		96.0	1.14		,	2.31		•		
_	23	105	Military C-3	19.39			-2.06		3.35	5.28			105.77				
678	23	83	Military C-3	0.50			-0.63		1.06	1.69		Н	1.83				"
_	ผ	244	80% gelatin	ò.20			-0.48		0.83	1.20		*	1.72	11	,		
88	8	° 245	80% gelatin	0.20			-0.48		0.87	1:12	"	75	1.35			ï	
_	25	246	80% gelatin	0.20	ų.		-0.148		0.79	1.03	·		့ 0.9င		-		
, 682	22	297	Coalite 7-S	1.30			-0.83		1.00	1.05			1.15		- -		
683	23	62	Military C-3	1.19			-1.02		1.57	2.92			14.03	^			, Y
₹	22	,	60% gelatin	0.412		"	-0.60		2.50	1.50		a.	3.64				
69	8	20	Coalite 7-S	0.413			-0.61		1.04	1.48		,6 1	· 2.3C	,	- ''		
989	23:	36	Atlas 60	1.90			-1.02		1.58	2.33			10.09				11
	23	116-R	Coalite 7-S	1.98			-1.09		1.83	2.53		۳	17.60				
889	S S	,3	60% gelatin	0.353	u		-0.64	-	5.16	1.17		~	3.04	٠			
_	23	î‡	Military C-3	6.4			-1.52		2.36	4.01			14.7c		: "		
-	53	ත්	Military C-3	0.50			다.0-		°.9	1.83			3.67	ou:			100
-	23	办	Atlas 60	19.04			-2.46		1 .00	5.77		12.	121.25		*		
692	23	141	Coalite 7-S	20.05			-2.51		3.94	5.13			140.83	ů			
693	22	291	Gelodyn l	0.38			-0.67		1.06	1.17			1.64	(

-

]	EXPLOSIVE DATA	ТА		CHARGE	GE			ļ. -	S. S.	CRATER DIMENSIONS	SNOIS			
TEN	TEMENIECE	SHOT		CHARGÉ	м	:	POSITION	NOI			APPARENT				-	TRUE	
, NO	TO TO		EXPLOSIVE TYPE	WEIGHT	4 LEN4		2 [γ'	da FŢ	ra FT	r L	α ₃ κ DEG	va CU FT	₽ Ľ	# t	i di	v _t cu FT
169	23	947	Atlas 60	4.82			-1.57		2.34	3.90		\vdash	31.77	1			
695	8	289	Gelodyn l	0.38			-0.68		1.08	1.30 0		-	2.00		<i>^</i>		Į,
969	ผ	290	Gelodyn l	0.38			-0.68		0.98	1.38		-	2.40				
169	22	13	Gelodyn l	0.307			-0.64 		1.42	1.10		-	1.87		~		6
698	52	712	Gelodyn l	0.362			-0.08		1.25	0.99	75	-	1.51				R
669	23	85	Militery C-3	0.50			-0.76		96.0	1.83			3.54				<u> </u>
8	23	106	Military C-3	19.52			-2.58		4.19	5.86			175.11				
707	ģ	21	Coalite 7-S	0.350			-0.68	,	1.29	1.36		-	1.92		2		,
702	83	74	Gelodyn 1	0.486			-0.76		1.50	1.14		<u></u>	:3.08				,
703	23	28	Atlas 60	66.0	P		96.0-		1.45	2.01	-	-	5.22		ï		
ą	23	37	Atlas 60	1.90			-1.22		1.69	3.14		_	12.63		2)		
735	23	38	60% gelatin	0.472			-0.77		1.75	1.58		-	3.570				
90	23	.23	Atlas 60	0.48			-0.7ï		1.15	1.90			3.74				
10	53	133	Coalite 7-S	4.93			-1.68		2.47	3.16		_	43.25				
8	ผ	37	60% gelatin	0.029			-0.31										
8	88	56.	Coalite 7-S	0.562			-0.8⁴		1.50	1.14			: 2.52			<u>.</u>	
2	23	63	Military C-3	1.99	,		-1.28		2.13	2.01			14.88		. 1		
5	શ્વ	305	Ccalite 7-S	99.0			-0.92		1.58	1.27			2.60	·	-		
žį	æ	306	Coalite 7-S	99.0		,	-0.92		1.46	1.35		".	3.00				
773	83	307	Coalite 7-S	99.0			-0.92	:	1.83	1.43			4.29				,
古	23	134	Coalite 7-S	η.92			-1.83		2.77	3.10		//	36.00				
71.5	ઇ	33	60% gelätin	0.413			-0.81		2.08+	1.51			5.66				
726	23	711	Coalite 7-S	1.98			-1.37		1.88	2.43			12.88				
727	25	15	Pentolite	2.65			-1.5		2.2	3.8		<u></u>	18.5			`.,	
728	52	16	Pentolite	2.65		·	£1.5		2.1	3.6			19.0				n
229	52	17	Pentolite	2.65			-1.5		1.8	3.6		''ــــــ	22.4				
82	52	18	Pentolite	2.65			-1.5	٥	2.4	3.0	,		19.2				÷
721	52	19	Fentolite	2.65			-1.5		2.3	3.3			23.0				
	:																

† Broke through interface of unfrozen ground,

			Ш.	EXPLOSIVE DATA	55 ° ∀.		CHAR	Щ				5	CRATER DIMENSIONS	NSIONS			
-		}					POSITION	NO.	"	•	111111111111111111111111111111111111111					Ļ	
<u>8</u>	NO. SOURCE	NUMBER	EXPLOSIVE	CHARGE	// E	¥.1 3				- 1	T AR	<u> </u>					
-				WEIGH!	È	LB ^{1,3}	Z FT	، د	da FT	ra FT	F F	α _a DEG	V ₃ CU FT	dt : FT	<u>- [</u>	α _t . DEG	cu FT
22	Ŋ	20	Pentolite	2.65			-1.5		2.1	3.1			20.8				, de
733	23	디	Pentolite	2.65	,		-1.5		2.0	3.4			22.0				
12t	23	શ	Pentolite	2.65			-1.5		2.2	4.3			9.54				,
73	ß	23	Pentolite	2.65			-1.5		2.4	2.9		.	25.9 =			Ŀ	
136	ß	캰	Pent, lite	2.65			-1.5		1.7	2.4		-	0.1				
727	22	25	Pentolite	2.65		Ĵ	r-1		2.0	2.8		 -	11.5				
738	23	56	Pentolite	2.65			-1.5		2.3	2.7		-	19.8				
138	<u>=</u> 52	23	Pentolite	2.65	.,		-1.5		1.9	2.6		-	15.5				-
30	23	58	Pentolite	2.65			-1.5		1.8	2.7			18.5				
<u>13</u>	Ŋ	107	C-3	2.65			-1.5		1.8	3.7		-	22.5				
732	ស	107	Military C-3	19.96			-2.97		4.53	6.45			208.28	#	_ ئر		
733	23	142	Coalite 7-S	20.06			-2.98		4.65	5.79		-	253.92		f	,	
<u>13</u>	23	55	Atlas 60 5	19.03			-2.96		4.35	6.22			161.64		[. 		
735	83	1,8	Gelodyn l	0.424			-0.84		2.661				7.17				ij
736	33	747	Atlas 60	4.81			-1.90		2.89	41.4			35.72		e.		
737	23	38	Atlas 60	1.89			04.1-		2.17	3.38		_	17.44				
738	ผ	,†	60% gelatin	0.294			-0.75		1,42	1,41			2.75		1		
739	ผ	57	Coalite 7-S	0.484			-0.90		2.08	τη•τ			1.83				
₹ 1	ญ	95	Military C-3	1.00			-1.14		1.66	2.50		L	11.52				i
747	83	275	60% gelatin	0.22			-0.69		0.83	1.08	¢	0	1.3%				
742	8	7,7	Gelodyn l	0.244			-0.71		1.12	रा.र			1.89		,		
743	ผ	83	Coalite 7-S	0.274			-0.75		10.1	1.31		-	2.10				
7.7.1	ถ	64-R	Millitary C-3	2.00			-1.45		2.13	3.34	^	-	26.34		,		
₹ £	23	98	Military C-3	0.50			-0.92		1.20	1.68			3.32				
9 ₩2	ผ	274	60% gelatin	0.22			-0.70		06.0	: 60•1			1.38				
747	23	276	60% gelatin	0.22			-0.70		96.0	1.23		-	2.04	Ŋ			
£.	ผ	04	60% gelatin	0.35			-0.83		2.421	1.56			5.95				
642	23	75	Military C-3	1.99			-1.48			2.26			10.96				

† Broke through interface of unfrozen ground.

		28		, ·	_														_	"	<u>"</u>	_		_		_	_			_
		Vt CU FT						ر دو)				47.	· v				,		-		ı	4	, g.	41		
١.	TRUE	αt DEG							ti						÷								:						-	
	4	ft FT				٥.									-	'	.			°	ı.							٠		
NONS		d _t FT					,		.,.														e)	ű			,			1
IMENS		",				<u> </u>	13)			-		_			_	~	"		<u> </u>				415	_			-			
CRATER DIMENSIONS		±4 no €∧;	τ. τ	4.16	11.12	31.6	00.04	1.67	34.56	21.5	4.54	2.76	1.19	22.2	19.5	161.79	229.86	68.0	2.33	3.44	21.87	1.37	6.35	91:9	5.40	287.14	8.66	6.78	5.83	96.98
)	ENT	α _a DEG					· 				 								L	,										
	APPARENT	h _a FT	L.	_	.,		L									_					L		_				_			
		ra :FT	1.15	1.43	2.96	2.07	3.79	τε•τ	4.32	2.28	3ξ-τ	1.13	1.00	1.24	1.33	5.58	5.89	4.0	1.10	17:1	2.87	.†o•.⊤	1.57	7.54	1.42	9 8 9	2.43	1.69	古.	1.73
	,	da FT	1.16	2.00	2.96	79.7	2.89	0.92	2.84	1.31	2.25	दा म	1.00	31.1	1.25	₹6.4	Ct7.11	0.58	1.29	1.31	2.30	1.17	1.83	12.2	18.1	5.09	1.70	2.33†	2.50	2.25
E	Z	, د													'n						_									
CHARGE	OSITIC	h-	2	99	ま	<u>ව</u>	55	£	99	98	146	73	73	73	35	17	48	01	33	33	52	- 62	1.7	1.7	17	33	35	116	31	35
Ŭ		7 5 7	-0.73	-0.85	ਰੋ. -	-1.19	-2.05	-0.70	-2.06	-0.98	46.0-	-0.73	-0.73	-0.73	-0.92	-3.44	-3.48	-0.40	-0.93	-0.93	-1.62	-0.79	-1.17	-1.17	17.77	-3.63	-1.35	-0.91	-0.91	-0.95
	-	≱ "g				"															1					1				· ,
A	\$	LB-TNT EQUIVALENT								8																				
EXPLOSIVE DATA	CHARGE	WEIGHT LB ;	0.236	0.364	; †6 . †	3.95	4.94	181.0	69.4	0.50	0-415	0.20	02.50	3.20	0.38	19.13	→ 20.ic	0.029	0.38	0.38	3.96	0.210	0.66	3.66	0.66	19.59	1.00	0.295	0.303	C.346
, E	" (TYPE	60% gelatin	Gelożym l	Coalite 7-S	Atlas 60	Military. C-3	Gelodyn l	Atlas 60	Military C-3	Committe 7-8	8% gelatin	30% gelatin	80% gelatin	Gelodyn l	Atlas 60	Z-2	60% gelatin	Gelodyn 1	Gelodym l	Coallte 7-S	Coalite 7-S	Coalite 7-S	Coalite 7-S	Coalite 7-S	Military C-3	Military C-3	60% gelatin	Gelodym 1	Coalite 7-S
	SHOT	LUMBER	5	64	135	" 83	75	15	.84	97 :	58	24,3	242	243	288	56	143	36	286	287	11.8	23	305	303	304	138	%	1,1	22	59
	FEMSOLIBOR		ଧ	22	ຮ	8	23	22	E)	23	প্র	R	N	ĸ	8	53	ଅ	ผ	22	22	23	8	8	ผ	N	23	53	ผ	S	22
_	E P	<u>و</u>	.20	51	.52	, 23	754	55	.26	27	28	-55	8	<u>6</u>	29.	763	76	.65	99	.67	8	69.	٤	┖	72	73	7.	75	92	H

+ Broke through interface of unfrezen ground.

\vdash				EXPLOSIVE CATA	Į.		2000	Į		,		CRO	CRATER DIMENSIONS	NSIONS				r
	,					Ī	POSITION	2 2				Ι.				١		T
EN EN	TEM SOURCE	SHOT		CHARGE	3	60	2	غ ق		▼ [APPARENT	Ę			-	TRUE		· · · · ·
ġ.		NUMBER	TYPE	¥ £ÍGHT LB	LB-TNT EQUIVALENT		Z FT	, , , , , , , , , , , , , , , , , , ,	da FT	r _a FT	ha FT	α _a DEG	Va CU FT	ů dt FT	FT	α _t DEG∹	V1 CU FT	<i>J</i> '
778	ซ	136	Coalite 7-S	76-11			-2.34		3.31	3.83			98 %61		,		í	_
773	ผ	1,2	60% gelatin	0.236			-0.87		1,50	1.67			3.95			5 T		
8	23	66	Atlas 60	1.90			-1.74		2.37	3.51			22.31				di	``
187	23	119	Coalite 7-S	1.98			-1.76		2.56	2.84			23.78					ļ 1
782	ຮ	65	Military C-3	1.99			-1.77		2.48	2.70			22.73		. "			
783	55	و٠	60% gelatin	<i>Δ</i> τ•c			-0.79	., .	1.00:	26-0			1.45				n	
₽ Z	ซ	a	Atlas 60	96.1			-1,76	,	2.67	2.67			13.32	ű				
785	ผ	320	Coalite 7-S	3.26		//	-0.91		1.29	1.09			2.11	//	į		,	· /
38	23	23	Atlas 60	0.48			-1.11		1.51	2.12			5.75					
787	23	†∂	Coalite 7-S	0.140			-0.75		1.08	1.25			1.87		w.,			_
88	ຄ	33	Atlas 60	26.0		Ç	o4.1-		1.86	2.30		H	8.61		.,		,	
289	83	9	Atlas 60	1.92			-1.79		2.46	2.88			17:41					
8.	ଯ	7	Atlas 60	1.92			-1.79		2.65	2.53			11:03					
791	23	ĊĮ.	Atlas 60	1.94		"	-1.80		2.62	3.00			15.80				e	
792	Ø	317	Coalite 7-3	ې 0 .2 6			-0.93	11	1.33	1.32			2.46					
793	:22	318	Coalite 7-S	0.26			-0.93		1,40	01.1			1.82	٨.				_
462	8	319		0.26			-0.93	v		0.56	ĭ	No crater	ter					
795	22	53	Pentolite	2.65	į		-2.0		2.3	4.0			36.4					_
8	25	33	Pentolite	2.65			-2.0		2.2	3.3	,	"	26:3					
797	23	31.	Pentolite	2.65			-2.0		2.4	3.5			26.9				,	
362	52	-32 🧀	Pentolite	2.65			-2.0		1.5	7.0			35.8					·
26	25	33	Pentolite	2.65			-2.0		1.9	3.1	,		20.4					_
88	25	3,	Pentolite	2.65			-2.0		2.1	3.3			1.61		-			"
801	25	35	Pentolite	2.65			-2.0		2.3	3.4			27.5	٥				Γ.
802	25	36	Pentolite	2.65			-2.0		3.0	3:3	,,	_	24.5					'n
83	ZZ	37	Pentolite	2.65			-2.ď		1.7	3.4	,		17.7					
708	25	38	Pentolite	2.65			-2.0		2.7	3.4			26.5					-:
805	25	39	Pentolite	2.65			-2.0		1.7	3.9 -		-	25.7				, 1	· ·

(7 of 21 sheets)

rt Shot fired in drift area.

÷			 [_		Τ-		_		Ë	<u>"</u> "			_		`				_	// \	ı -	31	ji T	` >	Ť	_		_	, .
1	i	VI CU FT	; ; ;			"		Ì			4	*				0	.11							u			z.			
	freue.	αt DEG		ü									31/1	Ż	"															
	Œ.	î. FT					7						ľ	-==		 -	20.0			(Q)	ii.		Ĵ		-		9			
NSIONS		ہL	7.3 ===							Ŗ,	8		14	1		11.			*	ý					٠,					
CRATER DIMENSIONS		Va CU FT	13.76	65.13	15.02	10.C4S	1.69	1.18	2.85		crater	13.29	12.13	27.63	14.1	18.72	5.07	28.65		17.63		2.84	26.26	3.25			ater	crater	4.48	10.4
Ō.	FN	α _a DEG								error	S S	-	-												» L		No crater	No		-
	APPARENT	를 E							_	Changing	٥						Ø.		Crate						Crater		ì			
	•	fа F Т	2.86	4.05	2.96	5.18	1.17	1.15	1.39	Cher	0.35	2,45	2.8µ	3.30	1.20	2:57	1.74	3.03		3.24		1.25	3.34	1.15			5.63	0.33	1.19	1.33
		da FT	2.31	3.47	2.52	5.56	1.000	39.0	34.1		,	2.67	2.75	2.79	2.8	7.75	1.59	2.34	ï	2.56		1.50	2. 7	2.08		,			1.92	1.92
CHARGE '=	No.	٧٠	v.																						-					
CHAR	POSIT	Z FT	-1.88	-2.59	-1.90	71.4-	-0.77	84.0-	-0.93	-0.92	-1.00	-1.92	-1.95	-1.96	- 2.77	-1.95	-0.98	-1.98	-0.92	-1.96	-0.77	-0.96	-1.98	-0.92	-0.95	-0.95	-1.03	-1.03	-0.96	21-12
	E -	r LB¹³																			-									
ΓA		LB-TNT ECUIVALENT															:		13									,	,	
EXPLOSIVE DATA	CHARGE	WEIGHT LB	1.93	4.92	1.91	20.14	0.125	0.029	0.22	0.207	0.26	2.86	1.93	%.99	0.118	1.92	0.242	1.93	0.191	1.88	0.11	0,22	1.91	0.185	2.207	0.207	9.56	0.26	0.205	0.365
3	EXPLOSIVE	TYPE	Atlas 60	Military C-3	Atlas 60	Coglite 7-S	Gelodyn l	60% gelatin	60% gelatin	Coalite 7-S	Coalite 7-S	Atlas 60	Atlas 60	Military C-3	60% gelatin	Atlas 60	Gelodyn I	Atlas 60	Coalite 7-S	Atlas 60	80% gelatin	60% gelatin	Atlas S	Coalite 7-S						
	SHOT	NUMBER	4	76	Θ	345	16	35	272	D	316	<u>'</u> '	10	99	7	5	51	16	91)†C	224	273	111	156	9/	85	314	315	19	159
	ITEM SOURCE		23	23	23	ຄ	ผ	Ø	ผ	22	સ	23	ន	<u>ي</u>	8	£23	ผ	ญ	શ	23	83	81	23	8	8	8	ผ	શ	શ	8
-	<u>₩</u>	ġ.	834	835	38	837	838	839	0 1 8	涯	342	8 1 3	∄ .	E.	98	14	848	648	920	120	852	953	954	955	926	857	928	959	8	361

 $\mathcal{U}_{\mathcal{D}}$

(9 of 21 sheets)

١			3	EXPLOSIVE DATA	Ψ.	G	2					CRAT	CRATER DIMENSIONS	SNOIS			
						Ī	A STANCE	<u> </u>				١.				ļ	,
Ĕ,	TEMSOURCE	SHOT	.,	CHARGE	3	£.1.3	701	5		₹	APPARENT					TRUE	
ġ		NUMBER	TYPE	WEIGHT	Ļ.	LB ^{1'3}	z FT	νς	d _a . FT	ra FT	h _a α _a FT DEG		va cu FT	, dt FT	÷,Ė	α DEG	, D. F.
962	22	285	Gelodyn l	0.38	171		-1.17	í	97.1	1.60	,	.,	5.06				
863		27.	60% gelatin	0.22			-0.98		1.73	1.34	_		3.00				
798		560	Coalite 7-S	99.0			-1.42			ON	crater				л		
865		299	Coalite 7-S	99°0			-1.42	.,	0.0	9.65	No	crater					,
998		300	Coslite 7-S	99*0 ;			-1.42	ĵ	1.92	1:90			7.09				à
867		301	Coalite 7-S	99.0			-1.42		2.29	1.30			3.62			.,	સ
868		165	Coalite 7-S	756.0			-1.60		3.42	1.90		1.	17.09	·		#	- "
969		145		20.10			-4-44-4-		5.17	5.83		293	293.40		,	,	
870		1+3	60% gelatin	11.0			≗0.92		1.42	1.40		٠,٠	3.55				.,
871		110	Coalite 7-S	0.178			-0.93	.,									
872	22	283	Gelodyn 1	0.38			-1.18		1.90	1.36		1	4.06	12.11			-
20	83	234	Gelodyn 🗹	0.38	3		-1.18		₹.80	1.18	,·		3.50		,		
874	ب	262	Coalite 7-S	0.68			44.1-										
875	_	263		0.68			-1.44				_				*,		
376	_	168	Coalite 7-S	O¶ 1,			1.8		3.25	3.19		36	39.15				
877		269		0.63			-1.42			No	crater	-					
878	_	261	Coalite 7-S	0.68			-1.45				•	-			٠.		
879	83	\vdash	Coalite 7-S	0.68			-1.45			No	crater					·~	
죓		= 13	Atlas 60	1.89			-2.05		2.71	3.20	-	Ĭ	30.85				"
881		1,4	Atlas 60	1.93			-2.06		2.66	2.92	-	ŭ	26.42				
882	:	1.8	Atlas 60	1.99			-2.08		2.59	3,14	-:-	. 36	36.44				
88	. 23	110	Military C-3	19.84			-4.48		5.90,	7.08	-	35	353.87				
88		295	Coalite 7-S	0.025			-0.48			.,		_					J.
885		72	Coalite 7-S	0.179			-0.93			Charging		error					<i>"</i>
986		96	Coalite 7-8	0.191			-0.96				rater						7
887		° 76	Coalite 7-S	0.191			-0.96			o	Trater	•					
88	Ц	120	Coalite 7-S	1.97	,		-2.08		2.75	3.30		ñ	32.46				
88		, 112	Coalite 7-S	0.178			-0.94	·	1.25	1.26			2.11	÷			31 21 31 31 31
#	Shot fir	ed in dr	Shot fired in drift area.	··										-			
		٠								•					%		a

$\overline{}$							т —	_			1		_	т —	_	_	100	1		_	Ť	~		(45)		,	1	$\overline{}$	$\overline{}$	_
	,	vt cu FT	;;	л				ر الا	, v		"	, e i è								-7	-	(8							
	TRUE	or DEG		٠			स्				7						-							Г			ľ			Г
	Ė	7- FF					"	",											,		٠.		-					,,		
IONS		dt F7										- 7		ė~-			-	-	-							1 11.		76.70	- 41	
MENS	H	.,		<u> -</u>			H	<u> </u>	 		<u> </u>	_	<u> </u>	<u> </u>	Ŀ	<u> </u>	<u> </u>		\vdash								ņ	_		
CRATER DIMENSIONS		V _a CU FT	2.63	306.85	2.15	2.25	7. To		8.6	17.97			45.21			36.51		13	4c.43					69.3	67.45	3.65	21.5	17.2	19.6	28.3
ľ	ENT	α_a			vě							crater		Ŀ		.,	crater	crater		ter	rer		Ŀ							
	APPARENT	h _a FT	L									ND CITS		Trater			No cra	No cra		No crater	No crater		Crater					<u>L</u>		
	`	r _a FT	1.30	ਰ•.८	1.19	1.03	2.57		1.26	2.69		ř	3.70			3.79	A	Ä	3.28	Ĭ.	я	3.98		1.70	69.4	1.10	3.3	3.6	3.7	3.7
		da F⊤	1.29	94.9	1.25	1.35	1.70		2.00	2.15			2.66			88.3			2.74					3.08	3.13	1.56	2.1	2.1	1.7	2.2
ı,	Z,	γ ^c						.,																						
CHARGE	POSITIO	Z FT	-0.97	84.4-	-0.98	-0.98	-1.32	-0.95	- 26.0-	-1.67	-0.96	-0.99	-2.13	-0.97	-1.16	-2.21	-0.97	-0.97	-2:18	-0.92	-0.96	-3.02	-0.77	-1.83	-3.01	-1.60	ıζ	7	7,	2
			٠٥	-1	Ġ	o o	宀	ģ	ဝို	디	ç -	ဂို	2-	Ŷ	디	-5	၀	ဝု	ΐ	ဝှ	9	Ę.	0	-1	۴,	-1.	-2.5	-2.5	-2.5	-2.5
	1.3	LB ¹ 3					ļ <u>.</u>						THE SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS						. •	٠.										
A	W	LB-TNT EQUIVALENT					V							,																
EXPLOSIVE DATA	CHARGE	WEIGHT LB	0.20	19.21	0.20	0.20	3.48	0.179	0.181	46.0	0£178	167.	2.32	0.179	205-0	2.00	0.165	0.165	1.91	11°C	0.153	4.93	90.0	1.07	4.78	2.7	2.65	2.65	2.65	2.65
		TYPE	30% gelatin	Atlas 63	30% gelatin	30% gelatin	Atlas 60	Coalite 7-S	Gelodyn l	Atlas 60	Coalite 7-S	Coalite 7-S	Atlas 60	Coalite 7-5	50% gelatin	Wilitary C-3	Coalite 7-S	Coalite 7-S	Atlas 60	Gelodyn l	Coalite 7-S	Coalite 7-S	80% gelatin	Coalite 7-S	Atlas 60	Coalite 7-S	Pentolite	Pentolite	Pentolite	Pentolite
	SHOT	NUMBER	240	82	238	239	[‡] 7	ಹೆ	22	ಭ	扫	8	17	75	13#	67-R	, 20T	103	15	175	83	126	223	167	20	1 97	143	#	345	91,
	TEM SOURCE		ี่	23	8	8	23	22	ผ	23	ผ	જ	23	ผ	ß	23	55	S	23	82	22	53	22	ผ	33	8	25	22	23	25
	TEM	o Ž	8	391	86	893	- ₹	895	96	897	868	668	8	<u>1</u>	305	.g	효	905	906	ķ 72	88 88	\$	910	110	216	913	416	915	916	516
																							<u>م</u> .							

				EXPLOSIVE DATA	4		CHARGE	GE				CRATER DIMENSIONS	ENSIONS		2 - 2000		
Ţ	A SOR IBOR	SHOT	200	CHARGE	*	-	POSITION	NO.	,	AP	APPARENT				TRUE		,
o `	NO.	NUMBER	TYPE	WEIGHT LB	LB-TNT W	. ¥. 3	Z FT :	γ°	da F7	r ₃	h _a α _a FT DEG	v _a cu FT	A F	= [DEG.	. ₹ 50	
918	52	1,7	Pentolite	2.65 🐃	0.		-2.5		3.1	4.8		39.1		_:	9		Γ
919	25	84	Pentolite	2.65			-2.5		2.5	3.7		34.5			ļ .	ŭ	,
8	£1.52	64	Pentolite	2.65		7	-2.5		2.7	4.2	1	148.5				.,	"
정	25	50	Pentolite	2.65			-2.5		2.8	5.0	ħ.	58.6			-	٥	
828	52	51	Pentolite	2.65	•		-2.5		2.6	1.1		34.5					
ଝୁ	25	52	Pentolite	2.65			-2.5		2.9	4.5		56.3					,
924	525	53%	Pentolite	2.65			-2.5		3.5	5.1		107.5					T
8	. 22	ż	Pentolite	2.65 🐃			-2.5		3.3	3.9		54.1		L			
8	25	55	Pentolite	2.65			-2.5		3.3	0.4		66.5			_		
921	25	26	Pentolite	2.65			-2.5		3.6	7.5		50.6	a s		_		Г
88	52	109	ი-3	2.65			-2.5			No	crater						Γ-
82	Έ,	34	60% gelatin	0.029			-0.56	,,	D.72	26.0		0.75			·-		
8	83	77	Coalite 7-S	0.153			-0.98			Charging	ng error	H		,			
쫎	_[97	Military C-3	1.00			-1.81		2.34	2.91		17.73			_		
8	8	298	Coalite 7-S	0.180			-1.02		1.21	1.2		1.32			Ľ	≎C	
8	ĸ	67	Military C-3	1.99			-2.29		2.73	3.77		38-36				-	
₹ 8	83	74	Coalite 7-8	0.153	*		-0.99			No c	crater	7.55	,,		_		Г
935	83	191	Coalite 7-S	0.14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-1.40		2.75	0.80		0.30					
936	8	158	Coalite 7-S	0.27			-1.20		2.08	00.0							
937	23	111	Military C-3	- 19.87			-5.໙ັ້		6.39	16.9	<u>. </u>	\$c•65¶			_		
938	ຊ	121	Coalite 7-S	1.96	`		-2.33		3.23	3.06		48.24					Г
£	1	59	Atlas 60	19.26			-4.98	/	6.32	12.9	(i	294.18				Ø	Γ.
₹	8	178	Gelodyn i	0.14			-1.42	7	X.		<i>J</i> .					>	
146	23	갩	Atlas 60	1.92			-2.32	9	3.03	4.25		54.10					1
ğ	ß	172	Gelodyn l	0.075			-0.79	•		No c	crater					o	_
943	82	174	Gelodyn l	0.115			-0.92			No c	crater				_	,	
₹	8	&	Gelodyn l	0.125			16.0-	ii i	i	7.	rater					 J.	
945	ผ	181	Gelodyn 1	1.43	1		21:3-		3.79	2.83		42,63					Г
=						-			Ą						l		ì

H 'Shot fired in drift area.

Table 3 (Continued)

SOURCE NUMBER	r				FXPI OSIVE DATA		ĺ						7544	D. C.	940			Å
SOUNCE NUMBER CHARGE NUMBER W13 (M)					ביין ביין			CHAR	E S				2 2	N DIMEN	SIONS			
Number N	TEM		SHOT	FXBLOSIV	CHARGE	**		POSIT	NO		¥	PAREN				.=	Z.	с .
22 28 Gelodym 1 2.19 2.143 2.00 0.65 19.16 1.143 2.00 0.65 19.16 1.143 2.00 0.65 19.16 1.143 2.17 1.48 6.66 19.16 1.14 1.145	o Z		NOMBER	TYPE	WEIGHT			7 F	. نړ	da FT	ة. F			, L	÷È.	- <u>F</u>	αt DEG	cu FT
2. 18. Genodyn 1 2.17 4.58 (5.6 m) 197.16 1.50 (1.5 m)	47.6	83	282	Gelodyn 1	0.38		,	-1.43		2:00	0.65	H		.75				
22 69 Contodyn 1 0.111 0.96 7 Contodyn 1 0.111 0.96 1.25 1.36 1 0.112 0.96 1.25 1.36 0.06 0.07	975	8	182	Gelodyn l	2.70			-2.77		4.58	6.56	<u> </u> -	197	97			100	5
22 94 Gelodyn 1 0.111 0.06 1 Optated 1 0 <td>976</td> <td>8</td> <td>&</td> <td>Gelodyn l</td> <td>TTT-C</td> <td></td> <td></td> <td>-0.96</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	976	8	&	Gelodyn l	TTT-C			-0.96				_	-				"	
22 59 Genodym 1 0.113 0.096 1.25 1.36 0 0 0 22 269 606 genetra 0.118 1.20 1.25 1.36 0 <	211	22	ま	Gelodyn l	0.111			-0.96		"	ర్	ater	:			: 0		_
22 444 6696 gealactin 0.118 0.098 11.29 11.36 1.49 0.219 0.198	978	 81	95	Gelodyn l	111.0			96°C-			5	ater						
22 270 60% gelatin 0.22 1.20 1.59 1.64 9.39 7.64 1.69 7.64 1.69 7.64 1.69 7.60	626	22	† †	60% gelatin	811.0			-0.98		1.25	1.36	_	Ŕ	82				
22 177 Gelodyn 1 0.37 1.44 2.00 1.34 2.96 6.08 9 <th< td=""><td>86</td><td>ଥ</td><td>269</td><td>60% gelatin</td><td>3.22</td><td></td><td></td><td>-1.20</td><td></td><td>1.58</td><td>1.64</td><td>-</td><td>m</td><td>65</td><td>,,</td><td></td><td></td><td></td></th<>	86	ଥ	269	60% gelatin	3.22			-1.20		1.58	1.64	-	m	65	,,			
22 177 Gelodyn I 0.37 1.14 2.00 1.34 2.36 1.36 1.37 1.14 2.00 1.34 2.36 1.37 1.14 2.00 1.34 2.36 1.34 2.36 1.37 1.37 1.14 2.36 1.37 1.14 2.36 1.37 1.14 2.36 1.37 2.14 2.36 2.33 1.14 2.36 2.36 2.36 2.37 2.14 2.36 2.36 2.37 2.36 2.36 2.36 2.36 2.36 2.36 2.37 2.36 2.36 2.36 2.36 2.36 2.37 3.37 3.32 <	ह्य	83	270	60% gelatin	0.22	QÂ		-1.20	٠.	2.04	1.93		9	80				
22 256 Gelodyn 1 0.36 1.43 5 6 7	882	83	177	Gelodyn l	.0.37			-1.44		2.00	1.34		Z	8.				
22 256 Gelodyn 1 0.37 -1.45 -	983	8	253	Gelodyn l	0.36			-1.43		ø								. "
22 556 Gelodyn I 9.37 1.145 1.63 1.96 1.97	g, o,	ଧ	256	Gelodyn l	0.37	,		-1.45				<u></u>						
22 194 Gelodyn I 9.33 4.23 9.30 <	985	22	258	Gelodyn l	9.37			-1.45		,			_	*				<u>.</u>
22 277 Gelodyn 1 0.37 -1.46 void void 0.73 23 90 Willtary C.3 0.56 -0.96 0.08 0.09 0.04 0.04 0.04 22 122 60% gelatin 0.096 -0.94 1.08 1.09 0.04 0.09 22 123 60% gelatin 0.104 0.09	8	- 22	184	Gelodyn l	9.33			-4.23	<u> </u>		9.30					-mark		. &
23 90 Military C-3 0.50 -1.61 1.97 2.73 9.53	987	83	257	Gelodyn l	0.37			-1.46				Vold						
22 122 60% gelatin 0.096 -0.94 1.08 0.50 0.04 1.08 1.09	8	23	90	့က 	0.50			-1,61	11	1.97	2.73		6	.53				
22 80 Gelodyn I 0.098 -0.94 1.08 1.05 1.65 7 22 67 604 gelatin 0.104 -0.96 1.09 1.65 7 22 79 604 gelatin 0.104 -0.96 7 6reter 7 7 22 79 Gelodyn I 0.104 -0.96 7 7 8 7 22 101 Gelodyn I 0.104 -0.96 1.25 0.76 0.57 7 22 107 Gelodyn I 0.104 -0.96 1.00 1.58 3.21 7 22 103 Gelodyn I 0.104 -0.96 1.00 1.58 3.21 7 22 103 Gelodyn I 0.104 -0.96 1.00 1.66 9.34 4.749 1.66 23 112 Military C-3 19.95 5.55 6.68 9.34 647.49 1.17 24 130 6.68	86,	322	122	60% gelatin	960.0			÷	/	90.0	0.50	,	o -	ਰਂ	1			. ==
22 123 60% gelatin 5.100 -0.94 1.08 1.09 1.65 1.66	8	25	8	Gelodyn 1	0.098			46.0-					_				a.	
22 67 60k gelatin 0.104 -0.96 cetetr cetetr 3.1 22 77 60k gelatin 0.134 -0.96 -0.	166	22	123	60% gelätin	0.100			-0.94		1.08	1.09		τ	.65				
22 77 60k gelatin 0:134 -0.96 -0.96 -c.96 -c.96 <th< td=""><td>8</td><td>.8</td><td>29</td><td>60% gelatin</td><td>101.0</td><td></td><td></td><td>-0.96</td><td></td><td></td><td>บู</td><td>ater.</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	8	.8	29	60% gelatin	101.0			-0.96			บู	ater.						
22 100 Gelodyn 1 0.104 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.97 -0.56 -0.56 -0.57 -0.57 -0.57 -0.56 -0.56 -0.56 -0.57 -0.57 -0.56	993	શ	ر در اثر	60% gelatin	0:134,			96.0-			ΰ	ater				"	· ·	
22 10.1 Gelodyn 1 0.104 -0.96 1.25 0.76 0.57 1 22 137 Gelodyn 1 0.104 -0.96 1.00 1.58 3.21 1 22 108 Gelodyn 1 0.104 -0.96 0.92 1.38 1.66 1.66 23 11 Gelodyn 1 0.111 -0.98 1.66 9.34 647.49 1.17 24 13 60% gelatin 0.184 -1.17 -1.11 -1.11	.	22	ido Ido	Gelodyn l	0.104			-0.96		".		",				¢		
22 137 Gelodyn 1 0.104 -0.96 1.29 0.76 0.57 0.57 22 138 Gelodyn 1 0.104 -0.96 0.92 1.38 3.21 0.76 22 13 Gelodyn 1 0.104 -0.96 0.92 1.38 1.66 23 11 Military 0.3 19.95 -5.55 6.68 9.34 647.49 647.49 32 13 60% gelätin 0.184 -1.17 -1.17 -1.17 -1.17	995	8	101	Gelodyn l	4ct.c			-0.96							3			
22 109 Gelodyn 1 0.104 -0.96 1.00 1.58 3.21 1.66 22 109 Gelodyn 1 0.104 -0.96 0.92 1.38 1.66 1.66 23 11 Gelodyn 1 0.111 -0.98 -5.55 6.68 9.34 647.49 -1.17 23 13 60% gelätin 0.184 -1.17 -1.17 -1.17 -1.17	86	25	LCT	Gelodyn l	0.104		11	96.0-		1.25	0.76	_	0	.57			` ^	
22 109 Gelodyn 1 0.104 -0.96 0.92 1.36 1.66 22 81 Gelodyn 1 0.111 -0.98 -0.98 6.68 9.34 647.49 647.49 647.49 647.44	8	. 22	138	Gelodyn l	40T.0			-0.96		1.00	1.58		(E)	ᅧ				,
22 81 Gelodyn 1 0.111 -0.98 6.68 9.34 647.49 23 112 Military c-3 -19.95 -5.55 6.68 9.34 647.49 5 21 13.3 60% gelatin 0.184 -1.17 -1.17	968	83	109	Gelodyn 1	0.104			96.0-		0.92	1.38		7	78				
23 112 Military C-3 19.95 -5.55 6.68 9.34 647.49 -1.17 -1.17	8	83	33	Gelodyn l	0.111			-0.98				,						
22 130 60% gelatin 0.184 -1.17	80	. 53	2112		19.95	dr.		-5.55		6.68	9.34		647	64				
	1001	22	130	60% gelatin	0.184			71.1-				- 25	_					ە.

(14 of 21 sheets)

	-		3	EXPLOSIVE DATA	٨		CHARGE	36E			,	CRATER DIMENSIONS	ENSIONS			
Ü	ITEM COUNTY	SHOT	1	CHARGE	A		POSITION	NOL		Ą	APP ARENT				TRUE	
o	2	NUMBER	TYPE	WEIGHT LB	NT LENT	W 3	2 FT:	ې ^د	da FT	F.1	h _a α _a FT DEG	V ₃ CU FT	å F	<u>=</u> L	œt DEG	VI CU FT
1002	23	25	Atlas 60	94.0			-1.58		2.04	2.38	-	11.97			L	è
1003	23	ᅜ	Atlas 60	14.74			-3.44		4.15	18.4	•	99.65		y.	Ŀ	,
1004	53	148	Coalite 7-S	20.12			-5.58	·	6.93	6.17		419.62				٥
1005	82	148	60% gelatin	0.321			-1.42		2.33	09*1		7.09				v
1006	83	183	Gelodyn l	5.40			-3.61			90.9					th.	
1007	83	133	60% gelatin	0.321			-1.43			No	crater			_	^	
1008	83	180	Gelodyn 1	1.18			-2.19		3.58		,,,,	04.04				. S
1009	8	80	.60% gelatin	0.059			٠.8 <u>.</u>	ч	0.92	1.12		1.06			<u> </u>	
1010		171	Gelodyn l	90.0			-0.81	".	n'	٥	crater				-	1 m
ᄗ	8	235	80% gelatin	0.21		ο,	-1.23		2.00	1.73		11.4			Ŀ	Э ⁻
2101	R	236	80% gelatin	0.21	,	ll	-1.23		11°T	1.55	L	3.78		_		
1013		128	Coalite 7-S	14.96			-3.53		ታ ት ት7	3.65		23.11			_	
101	83	124	60% gelatin	0.103.			-0.98			Appriji	surface				-4	
1015	23	143	Atlas 60	1.89			-2.60		3.37	4.18		19·61			. "	
1016	83	29	60% gelatin	0.089			-0.95				Crater				_	
1017	8	121	60% gelatin	0.092			-0.95	*-90	0.21	1.27	,	0.41				
1018	, 33,	19	Atlas 60	1.98			-2.66			17.4	L	15.06				: 0 :
1019	53	18	Military C-3	4.81			-3.56		2.72	6.33		69.22			.	-
1020	8	145	60% gelatin	0.184			-1.21		2.08	1.32		3.57				
1021	83	237	80% gelatin	0.20			-1.23		₁ 1.33	1.25		2.59		,		
2201	83	136	60% gelatin	0.505			-1.70									
1023	8	154	60% gelatin	0.749			-1.93		3.59	3.09		42.15		* 350	_	
1024	83	33,	60% gelatin	0.029			-0.66		0.10	0.33	. 6	00.0			L	
1025	82	99	60% gelatin	0.089			96.0-				Crater		ı.	-	_	
1026	ß	87	60% gelatin	0.090			96.0-		,		Crater			Δ	L	
1027	8	89	Gelodyn l	0.098			-0.98			i.		-			_	
1028	23	្តិន្ន	Coalite 7-S	1.97			-2.56		3.25	3.23		19.54		٥		~
1039	8	27	Gelodyn l	0.049			-0.79									
				0					,							

Table 3 (Continued)

			8						-			,				
_				EXPLOSIVE DATA	TA		CHARGE	GE				CRATER DIMENSIONS	ENSIONS			
ITEM	<u>1</u>	SHOT		CHARGE	*		POSITION	NOI		٧	APPARENT			-	TRUE	o.
ON ON		NO. NUMBER	TYPE	WEIGHT LB	LB-TNT EQUIVALENT	, tel	Z FT	°ړ	Ep Pp	ra FT	ha coa FŢ DEG	Va CUFT	- T	<u>- ا</u>	α _t DEG	yt ° ta CU FT∷
1030	2	209	80% gelatin	28 0.0			-0.92		1.12	1.41		2,42				
1031	ผ	1,12	60% gelatin	0.085			±16.0-	9	1.21	1.27		2.01				6
1032	ผ	139	60% gelätin	0.750			-1.97								-3.4	
1033	Z	57	Pentolite	2.65			-3.0		0.4	4.8	,	c.or.			Ŀ	
1034	22	82	Pentolite	2.65			-3.0		4.4	5.5	 	123.0				
1035	SZ.	53	Pentolite	2.65			-3.0		3-3	7.4		74.4		L		9.
1036	25	9	Pentolite	2.65			-3.0	,	₹*€	4.5		6.49				
1037	25	79	Pentolite	2.65			-3.0		3.6	5.4		91.2				
1038	22	છ	Pentolite	2.65	,		-3.0		3.9	4.8		0.641				
1039	25	.63	Pentolite	2.65			-3.0		3.5	5.4		80.0		w.		
Office	Z,	<i>ੂ</i> ਹ	Pentolite	2.65			-3.0		3.7	5.9		0.46		_		
- 1	R	65	Pentolite	2.65			-3.0		3.1	5.1		6.15				5.8
1042	52	8	Pentolite	2.65			-3.0		3.5	5.8		62.2				
	EX	19	Pentolite	2.65			-3-0 .		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	No.	crater					
	N N	88	Pentolite	2.65			-3.0	5	3.5	1.9		66.3	,	Î		
1045	22	8	Pentolite	2.65	0		-3.0		3.1	6.0.9	-	76.8		#		۰۰,
1046	22	٤	Pentolite	2.65			-3.0	:	3.8	6.8		131.0				-267
	, 22 ,	110	C-3	2.6			-3.0		3.7	6.4	7	43.2				and the
		173	Gelodyn l	0.085	5		96-0-			Ι¥ο	crater		c			.3
	83	120	60% gelatin	0.089			-0.98									
_1	ผ	249	60% gelatin	0.27			-1.42	,								
	8	ಚಿ	:80% gelatin	0.31			-1.48		2.33	1.55	ě	5.86	6		ÿ	æ
	2	ដ	80% gelatin	0.31°			-1.48		2.58	1.55		7.81				. زاید
	83	81	60% gelatin	0.085			76-0-					0.29			6	
_1	8	88	60% gelatin	0.090			-0-99				Crater	-			S.LOTE	
_1	Ω,	33	Atlas 60	0.98			-2.18	-	2.56	3.23	إ	21.33			aster e *	
\perp	8	\$	Military C-3	1.99			-2.77		3.11	4.49		70.10		э .	(±59	
1057	8	197	80% gelatin	0.075			-0.93		2	COLL	Collar circle				Ţ	3

٠.			!				Ť	,,	10°	<u> </u>	· "	- 35 	_	_	 L.			, ".				Ë	ű K	-	<u> </u>	4	-	1		 	_
٠.			cu FT					,,	, "				,];;	ج,	,,,		J			-		. It			in o		C	 .s."	33	
		TRUE	αί DEG				ı.							,			_	_									-				ľ
		HT.	FE			"			ē		. 30		-	٥															ï		ľ
	ONS		- 1-1 FT		-		 		-					0 1	-										_						н
	CRATER DIMENSIONS		va Cu FŢ	0.85		1.18	2.70		25.79				2.89		3.50	7.55	2.29	G.			-	. 3.:						3.66	-	19.75	Ļ
	CRATE	te sa		0	-5.	_	R	_	25	/~			. 2.		m	7.	2,			,		_		-				3		19	L
	Þ	APPARENT	α ₃	_	_				_	L	ctrcle	crater	L	at	o ì			ter.			crater		1;cle	circle			۰	Ц	Ŀ		L
		APP	h _a	-	_		_	Ŀ	_		Collar c	No cre	-					No crate	_	_	No cre		Colfar circle	Collar c	1					_	
			"2" E	2.16		1.19	1.37		2.4	2.24	င်		1.66		1.68	19.1	1.27	,	1.20	0.62		0.62	Ç	တိ				1.82		3.34	L
			β FT :	1.57		0.83	1.25		3.46				2.08		1.25	2.75	1.25		0.25	0.33			·	,				1.17		3.25	١,
	3E	N O	۰ ک			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												j.		,,											Ī
	CHARGE	POSITI	z FT	-3.78	46.5-	69.0-	800	86.0-	-2.12	-6.03	-0.94	-0.81	-1.44	-o.m	-0.97	-1.91	-0.98	-1.46	-1.46	-1.46	-1.48	-3.87	-0.94	10.0-	96.0-	-0.96	<u>}</u> 0.9€	96.0-	-1.42	-1.92	
		<u></u>	 , e.			<u> </u>	, ,)		È		·		-								_ <u>''</u>		•				N-1	'			F
	`					_		-	-			-							-				-			_	_				-
	A	3	LB-TNT EQUIVALENT									,,					2 62 6	. "			٠.,		,				.,		,		
	EXPLOSIVE DATA	CHARGE	WEIGHT LB	96.4	19.08	620.0	0.078	0.085	0.87	19.92	0.075	0.045	0.258	0.04	≎.082	0.503	0:081	0.260	0.26	0.26	0.27	4.90	0.070	0.070	0.074	0.075	0.075	0.075	0.24	0.594	
	EX.)enve		7-S		ıtın	ıtın	ıtın	1	r c-3	ttla	1	ttin	ıtin	ıtı	ıtın	tin	tin	tin	- 1	J. 0 5		ttn	tin	tin	tİn	tin	tth	tin	tin	_
		'	TYPE	Coalite 7-S	Atlas 60	60% gelatin	60% gelatin	60% gelatin	Gelodyn 1	Military C-3	80% gelatin	Gelodyn l	60% gelatin	80% gelatin	80% gelatin	60% gelatin	60% gelatin	60% gelatin	80% gelatin	80% gelatin	Gelodyn 1	Atlas 60	80% gelatin	:80% gelatin	60% gelatin	80% gelatin	80% gelatin	80% gelatin	60% gelatin	60% gelatin	
		SHOT:	NUMBER	6द्वा	8	, 22	lıt 🗼	्राटर्	179	113	196 1	170	147	83	207	151	118	132	1,12	215	176	73	194	195	77	20t	205	206	248	153	•
		ITEM SOURCE		ន	23	8	ผ	જ	ผ	23	82	ผ	83	83	8	83	83	ß	R	8	.81	23	8	8	į. K	ξi	8	8	82	-84	
ł		<u> </u>	<u> </u>	1058	1059	1060	1901	1062	1063	1 901	1065	99 10 90 10	1067	8907	900	QLOT	101	1072	1073	1074	1075	1076	1701	1078	1079	880	ഖ	1082	1083	₫ Oĭ	1000

1.

(17 of 21 sheets)

· 11	_		, 15	2	EXPLOSIVE DATA	×		CHARGE	3GE		51		S.	CRATER DIMENSIONS	NOISN				_
"	TEM	ITEM SQUECE	SHOT		CHARGE	*	ŗ	FISS	LION		¥ ,	APPARENT	L	-		1	TRUE	g of	
"	ON.	*	NUMBER		WEIGHT LB	LB-TNT EQUIVALENT	¥ <u>0</u>	2 FT	۰,	da FT	ra FT	ha r	α ₃ DEG	va Cu FT	d FT	וו הד	oec Dec	VI CUFT	200
	1086	23	124	Coalite 7-S	1.98			-2.89		3.69	2.01		\vdash	3.74 14.6	<i>'</i> '	ч,	· :.		
1	1087	ß	208	80% gelatin	0.082			6.0-		0.33	1.01		-	0.55				1	1 :
	1088	22	129	60% gelatin	941.0			-1.22					-	·				<i>y</i> .	ar At
	1089	83	26	60% gelatin	140.0			-0.81		0.21	0.57		-	0.01					TL.
	1090	83	135	60% gelatin	904.0			-1.71				_	_			 			3."
خ.	1001	83	150	60% gelatin	9011:0			7.17		2.83	1.26		_	3.66				e e	()
	1092	83	144	60% gelatin	0.147			-1.23	"	00:00	0.0		-					_	-
	1093	23.	ે16	Military C-3	0.50			-1.86		2,18	1.77		-	1.70		<i>;</i>	. ,	, ,	-
	₫ OI	8	138	60% gelatin	0.595	,		-1.95				_	, , ,		,,				13.44F
	1095	23	2	Military C-3	4.85			-3.92	6	1.55	2.95			13.91					". "
	9601	Ø	82	60% gelatin	0.074			96.0-			34	Crater	-						
	1097	8	93	:60% gelatin	4,20.0			-0.98	,		a	Crater	-			-			į.
• 1	807	8	115	60% gelatin	0.070			96.0-			වී	Comour Jet	ß.		,			19 13 c	
	861	23	2	Military C-3	1.99			-2.95		3.41	2.32		o S	5.45	. 6		n 0 		
	8	23	150	Coalite 7-S	20.11			-6.37##		7.27	7.75		3	241:52		,			_
3.74	101	83	192	80% gelatin	0.065			46.0-			8 Red1a1	d cracks	Eg.						<u> </u>
	7707	શ	193	80% gelatin	0.065			46.0-			Radial	I. cricks	lg.	a.a. 1					
انن	<u></u>	23]	26	Atlas 60	0.46			-1.81		1.21	9.88	•	, o .	0.48	٠				
<u> </u>	4011	8	65	60% gelætin	4,20.0			-0.99			No	crater	<u> </u>			6		И	
<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	1105	23	25	Atlas~60	1.77			-3.97		3.36 °	1.68	125		1.70	15	79 2 3	30 S & 7		***
<u> - 1.1</u>	9011	8	212	80% gelatin	0.22		.,	-1.42		टा:०	0.36			-0	11		基	° e	
1	107	8	247	60% gelatin	0.22			-1.42		,	,,			-	,			g.	_
	8	8	250	60% gelatin	0.22	ì		-1.42				, ,						,	
	100	8	252	60% gelatin	0.22			-1.42							-		0		
· · · ·	ä	22	251	60% gelatin	∞ 0.22			-1.43					Н					J	<u></u>
4, ()	7	83	8	60% gelatin	0.067			-0.98		,					 			,	_
- 11	FI.	22	911	60% gelatin	0.074			-1.01			No	crater			1 10				i. 2
	ξŢ	83	88	60% gelatin	0.067			-0.99	. ,	i.			\vdash		8 .,	34			
	±	hot fir	red in dr	Shot fired in drift area.						**	* 	3		3	- gu				
											,			-					

No creter 0.32 No crete 0.82 No cret 0.95 No cret 1.39	No crater FT DEG CU FT FT	No creter FT DEG CU FT FT	FT DEG CUFT FT	FT DEG CUFT FT	FT DEG CUFT FT	FT DEG CUFT FT	FT DEG CUFT FT	Creter FT	## CUFT FT ## Correct ## 31.70 ## 30.19 ## 30.19 ## 2.25 ## 400.0# ## 00.0	T. No creter No creter No creter No creter To 31.70 30.19 0.75 x 2.25 x 1.14		cu f T F T reter reter ago, 19 0.75 0.75 0.00 0.00 deep	cu f T F T reter reter ster 30.19 0.75 0.75 0.00 0.00 1.14	.00 .00 .00 .00 .00 .00 .00 .00 .00	70 70 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.0	70 7.0 1.19 2.25 2.25 2.23 2.23 2.23	70 70 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.1	70 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	70 .70 .77 .75 .25 .25 .25 .25 .23 .23 .23 .23	15T FT FT
No creter 0.32 No creter 0.82 No crete 0.95 No crete 0.95 No crete 1.39	No creter 0.32 No cret 0.82 No cret 0.95 No cret 0.95 No cret 1.39	No creter 0.32 No creter 0.82 No cret 0.95 No cret 0.95 No cret 0.96 No cret	lo crater No crate No crat	ho crater No cret No cret No cret Coreter Coreter Coreter	ho crater No cret No cret No cret Crater Crater	lo crater No cret No cret No cret Creter Creter	lo crater No cret No cret No cret Creter Creter	crater No crat No crat No crat Crater ater	No crat	No crat	lo crat lo crat lo crat lo crat lo crat lo crat lo con lo crat lo con lo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	CU FT reter rater rater rater 31.70 30.19 0.75 0.75 0.00 1.14 0.00 deep 0.12 1.23	cu FT cu FT 31.70 30.19 0.75 0.07 1.14 1.23	CU FT ster 31.70 30.19 0.75 0.0 1.14 1.23	CU FT ster ster 30.19 0.75 0.0 1.14 1.23 1.23	CU FT tter tter 31.70 30.19 0.75 0.75 1.04 1.14 1.23	cu FT tter tter 31.70 31.70 0.75 0.75 1.04 1.14 1.13 1.23	ter ter ter ter ter 33.70 ; 30.19 0.75 0.75 0.05 0.0 0.12 0.12 0.12 0.12 0.12 0.12 0.12
No creter 0.32 No cret 0.82 No cret 0.95 No cret 0.30 4.39	No creter 0.32 No cret 0.82 No cret 0.95 No cret 0.30 4.39 4.39	No creter 0.32 No cret 0.95 No cret 0.95 No cret 1.39 1.99	No craft No craft No craft	No cret No cret No cret Creter	No creter No creter No creter Creter	No craft No craft No craft Craft Craft	No ors No ors No ors O crater Crater	Mo Gra No Gra No Gra No Gra No Gra Sterrater Sterrater Crater	NO OC CTS	NO CTS			1					[[[전] 전] [[] [] [] [] [] [] [[[[[[[[[[[[[[[[[[[[[회회회 기기기 그 그 하
0.0 88.0 95.0 86.4	0.95 0.95 0.95 0.95 14.99	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	86.0 89.0 90.0 90.0 90.0 90.0 90.0 90.0 90	0.32	0.32 0.93 0.94 0.95 0.95 0.95						Crater 60 crete 60 crete 60 crete 70 cr	Crater 60 crate 60 crate 70 crate 70 crate 70 crate 71 cr	No creter No Crater No Cra	No creuer No Crater No Cra	No crater Creter Creter Corater	No crater Crater Crater Corater	No crater Crater Crater Corater	No crater Crater Corater	No crater Crater Crater Corater No crater Corater	Crater O crater
	3 63	3.33	2.72 3.31 1.77	3.31	2.72 3.31 1.77 1.12			0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00	0.38 0.095 0.39 0.39 0.89 0.89 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0.32 0.95 0.95 0.90 0.90 0.00 0.00 0.00 0.00	0.32 0.95 0.95 0.90 0.80 0.80 0.80 0.75 0.75 0.75 0.16 0.46 0.46 0.46 0.46	0.32 0.95 0.30 1.29 0.80 0.80 0.75 0.75 1.52 0.16 0.16	0.32 0.95 0.95 0.80 0.80 0.80 0.75 0.75 1.53 1.65 0.46 0.46	0.32 0.95 0.95 0.90 0.80 0.80 0.80 0.75 0.75 0.75 0.46 0.46 0.46 0.46 0.46	0.32 0.95 0.95 14.39 14.99 0.80 0.80 0.75 1.22 0.75 1.65 0.46 0.46 0.46 0.46 0.040 0.90 0.90	0.32 0.95 0.95 0.95 0.80 0.80 0.80 0.46 0.46 0.46 0.46 0.46 0.90 0.90 0.90	0.32 0.98 0.95 0.90 0.90 0.80 0.80 0.80 0.46 0.46 0.46 0.46 0.90 0.90 0.90 0.90 0.90	0.32 0.98 0.99 0.90 0.90 0.80 0.80 0.80 0.80	0.32 0.99 0.95 0.90 0.80 0.80 0.80 0.80 0.46 0.46 0.46 0.46 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.090 0.90	0.32 0.98 0.99 0.90 0.80 0.80 0.80 0.80 0.46 0.46 0.46 0.46 0.90 0.90 0.90 0.90 0.90 0.80 0.80 0.80
1.45 -1.45 -1.45 -2.38	1.42 -1.45 -1.46 -2.38	-1.45 -1.45 -1.46 -2.38 -3.00	1.45 -1.45 -1.45 -2.38 -3.01 -1.44 -0.98	1.45 1.145 1.146 1.2.38 1.3.01 1.144 0.98			▗ ▗ ▗ ▗ ▗ 	▝▎▔▐▆▕▘▀▍▀▋▀▋▘▐	▀▍▔▕▄ ▔▞▔▜▀▜▀▝▍▀▍▀▍▀▍▀▍▀▍▀▍▀▍▀▍▀		▗ ╇ ┈ ┪ ╸ ┪╼╅╼╅╼╅╸┪╸┪═┪╸┩┈┪═┿╸┥	▗▗ ▗	▗▗▗▗▗▗▗▗▗▗ ▗ ▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	▗▗▗▗▗▗▗▗▗▗▗ ▗ ▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗						
4.1- 4.1-									┈┧╍╏┈╇╼╇╸┝┈┢═╪╍╇ ╺ ╠╒ ┼╌┼		┈┢╍┆┈╬╼╬╸┝╶┢╍╪╍╃┄╬═┿╸╎┈┆┈┿╺ ╪	┈┢╍╏┈╪╼╡╸╽╴╞═╪╍┩ ╌ ╬═╡╸ ┼		┈┆╸┆┈╡╍╡╸┆┈╞═╡╍╏╶ ╬═ ╡╸┆┈╏╸┆┈┆ ┈┼		┈┧╍┢╍╬╍╬╍╏╸┠╸┠╸┢╍┢ ╍╬╶╬ ╒╸┢╸╏╸╏╸╏╸╏╸╬╺╬╸ ╬	┈┧╍╏┈╡╼╡╸╽┈╎═╡╍╏ ┈╬═╅╌╎┈╏┈╬╶╬╺╅┈╏┈╏┈╏┈			
0.92 0.94			22. % 46. % 10. % 10. %	22. 22. 49. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	25. 26. 27. 28. 29. 29. 20. 30. 30. 30. 30. 30. 30. 30. 30. 30. 3						22 % % % % % % % % % % % % % % % % % %	22 % % % % % % % % % % % % % % % % % %	12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	12. 29. 29. 29. 29. 29. 29. 29. 29. 29. 2	1.22 (2.65 (12. 29. 29. 29. 29. 29. 29. 29. 29. 29. 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2
0.94	25.C 46.0 1.92	22.0 0.94 0.94 1.92 1.92 1.92 1.92	20.0 10.00 12.00 12.00 10.00	20.0 20.0 20.0 20.0 20.0 20.0 20.0	20.0 1.29 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	20.0 14.0 12.0 12.0 12.0 10.0 10.0 10.0	20.0 14.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	20.0 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	20.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5	20.0 11.99 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.	20.0 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	20.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9.0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.00 1.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.094 1.90 0.063 0.063 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.0	0.94 0.94 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07	0.94 0.94 1.92 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083	9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.0.0 9.
	1.92	1.92 th 0.21	1.92 In 0.21 0.063	1.92 0.21 0.063	1.92 0.21 0.063 0.066	1.92 0.21 0.063 0.066	1.92 0.21 0.063 0.066 0.066	1.92 0.21 0.063 0.066 0.066 7.66	1.92 0.21 0.063 0.066 0.20 7.66 0.059	1.92 0.21 0.063 0.066 0.20 7.66 0.059	1.92 0.063 0.066 0.066 0.20 7.66 0.059 0.021	1.92 0.063 0.066 0.066 0.20 7.66 0.059 0.021	1.92 0.063 0.066 0.066 0.20 7.66 0.059 0.055 0.055	1.92 0.03 0.066 0.066 0.20 7.66 0.059 0.01 0.021 0.027 0.021 0.025 0.055	1.92 0.063 0.066 0.066 0.050 0.020 0.020 0.021 0.021 0.021 0.055 0.055 0.066	1.92 0.063 0.066 0.066 0.050 0.079 0.01 0.055 0.055 0.055 0.055 0.055	1.92 0.063 0.066 0.066 0.050 0.072 0.012 0.021 0.021 0.025 0.039 0.039 0.039	1.92 0.063 0.066 0.066 0.050 0.020 0.030 0.021 0.055 0.055 0.059 0.059	1.92 0.063 0.066 0.066 0.050 0.020 0.021 0.021 0.025 0.025 0.055 0.055 0.059 0.059	0.066 0.066 0.066 0.066 0.059 0.01 0.057 0.057 0.059 0.059 0.059

19 of 21 she

,, o .	_			1		· ·	—	··	_	((: \}	,	″ =□		,.		· ·		_		- i?	_		ï			_	, -	_	_
		vt CU FT				e,				104, 10 17 , 10 10 10 10	0						,								2	, e ,		. ,	'tt 'ei	11
i t	TRUE	oxt DEG	Γ										-			j	g.		,				\$ 8		· ,	-	,	E 9		
l"	=	- L													,									-				0	-	
SIONS		ΨĽ		-					_	,		-	<i>iell</i>										· o·	-	::			-		
CRATER DIMENSIONS		Va CU FT			\$.83#	2.07	-	deep .	deep	1.02	04.1	25.0	68.9	33.6	96.2	7.74		l		1		16.0						350.0#		2.94
3	ENT	aa DEG						2 11	平 7								: "xa	ŗ	er	ı	Į.		Į.	0	A		ı,			
	APPARENT	립		L	L	L	_	121e, 1	r 1c 1		ļ.,		 1?				No creter		crater	crater	crater	^	crater	No crater	No crater	No crater	crater			
		ra FT	96.0	0.30		-	80.0	Collar circle 1	Collar circle 1/2	98.0	1.58	7.4	5.8	1.4	6.5	6.4	Ň	M	No	No	No	0.4	No	ž	Ž	ă	: NG	7.20	92.0	1.10
		da F⊤	0.33	0.08	0.83#	0.76	000		8	2.45	3.08	2.1	3.7	3.5	٥٠4	3.8					,	1.2) -					0.25	2.83
SE ,	NO	Ų	,,										U			,		a			.,			* . "		-				
CHARGE	POSIT	z FT	-1.46	-1.46	-1.46	-3.12	-1.95	まら	まら	-2.01	-2.54	-3.5	-3,5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	24.4-	-1.48	-1.7.
		, E 3	<u>'</u>	<u> </u>			-	_						11	; ()			1	-				in.							i
		≭ "]	\vdash	_			-	-	<u> </u>						"		<u>i</u>								2-	-				_
٧	*	LB-TNT EQUIVALENT	,) J	iζ									,.	a.	
EXPLOSIVE DATA	CHARGE	WEIGHT LB	0.20	0.20	0.20	1.92	0.450	0.050	0.050	0.50	1.00	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	5.28	0.20	0.336
LLÍ	. CX	TYPE	80% gelatin	80% gelatin	30% gelatin	Atlas 60	60% gelatin	80% gelatin	80% gelatin	Military C-3	Military C-3	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	Military, C-3	80% gelatin	80% gelatin	60% gelatin
	SHOT	NUMBER	218	219	122	S	152	188 81	61	ğ	8	F	ы	73	7.	32	<u>.</u> 92	F	38	Ð	æ	8	: &	33	න්	95	Ħ	230	830	641
	SOURCE		ผ	8	8	_8	81	ผ	8	8	23	22	. 22	. 53	. [2]	EN.	SH.	SX.	22	25	23	22	23	22	22	S.	<u> </u>	શ	ผ	ผ
	TEM	o Z	1142	1143	7	1145	917	LT.	841	1149	1150	대	1152	153	17.	1155	1156	11.57	1158	1159	971	1761	1162	1163	1977	1165	3911	1167	1168	1169
		es -			_	9							4-				0	_	ч					- i				-9		، اعت

* Estimated.

_	Γ				FXPI OSIVE DATA	\ \ \		100	١				CRATICEDIMENSIONS	SNOISNE	1			Г
	-		1				T	POSITION	N S		1	APPARENT		_		TRIE		1
	NO.	SOURCE	NUMBER	EXPLOSIVE TYPE	CHARGE WEIGHT LB	M LB-TNT EQUIVALENT	w1.3	Z FT	الم	d _a	- F	ha ca FT DEG	S × CU FT	9.5	= 1	at DEG	vt CU FT	Τ"]
-	_	, 23	526	80% gelatin	54.0	o o		-1.96		य 0	0.14	0			1	L		
٠	171	83	227	80% gelatin	0.45			-1.96		Ų	1.70			,				
نــ	1172	8	143	60€ gelatin	0.111			-1.23	ΪŤ	1.58	0.50		14.0					
	1173		228	80% gelätin	1.48			-2.94	, ,	4.12	2.48	1	24.0		-			Î
٠	1771		125	.60% gelatin	0:052			-0.96			5	Cratér						ÍΠ
0	11.75		137	60% gelatin	944.0			-1.97	41		ON .	crater.		-		,		
	9211		225	80% gelatin	2+1-0:*			-5.00		2.08	2,81	3	20.10					-
	LI LI		શ	60% gelatin	0.029			-0.81		0.27	0.61	· ·	0.12					1
	1,78	Ŕ	30	60% gelatin	0.029			-0.81		0.04	0.25		05.00					
	11.73	81	똢	60% gelatin	0.029			-0.91		0.23	0.41		£0.03					
۰۰۰	9	ผ	186	80% gelatin	c.045			₽.0-		Col	ar cir	Collar circle 1/2 in	ď		2.5			
لنن	1181	23	.61	Atlas 60	19.09			-7.00		8.60				9				П
	1188	SI SI	128	60% gelatin	0.109			-1.26			No	crater				a		
	8	83	187	80% gelatin	0.045			-0.95		Col	ar ctr	lar circle 1/2 in	n deep		}			¥ .
٠٠٠	3	8	140	60% gelatin	0.051			-0.98		0.38	0.88		6 0.57					
	1,85	23	14.5	Atlas 60	1.92			-3.29		1.89	2.03		1.80	(g*	15		 N.,	
	8	เร	114	Military C-3	19.98			-7.20					· · ·				,	
	191	23	53	Atlas 60	4.80	-	1	-4.52			*	,			" -	_		- Ť
	88	33	8	Military C-3	4.92			₹. †		1.28	3.03	-	10.73			_		٦.
	81	23	27	Atlas 60	0.18			-2.09		er'	2.45				= =	_		٦
	190	23	35	Atlas 60	\$ °			-2.63			0.38					-		
	1617	8	100	Military C-3 😕	1.00 \$			-2.79		3.38	0.65		0.31			2	<i>A</i> 1	1
	267	23	2	Military C-3	1-99			-3.53			0.81	-		\$ -		_		7
	1193	23	.93		0.50	*		-2.24		2.50	80.80		0.47	y"	_		,	
	1 611	83	101	Military C-3	1.00			-2.85		3.43	1.76		3.06					
6	1195	23	เม	Atlas 60	1.93			-3.61							12.7°	-0	. "	
	9 61	SZ.	8	Pentolite	2.65			0.4			Ş.	crater		.		4		-1
لنن	1197		87	Pentolite	2.65			-4.0	=		, No	No crater	-		_			٦
1		ı														-		Ì

1				_	- "			,					٠	<u>;;; </u>	`	<u>`</u>	1		7					_	_	<u>`</u>	<u> </u>	1	1	1)
	, , , , , , , , , , , , , , , , , , ,		Vt CUFT			~													n.,				*							
0	.,,	TRUE	αt DEG						<i>a</i>									, č	_			٥				<u> </u>		,	İ	r
		1	-1- F-1												٥		,		"						•-11					
	SIONS		dť FT	A+						I												H	2	-			-		פי	
	CRATER DIMENSIONS	5 %20	v ₃ cu FT					55.0	16.1		1				°6.0 °°					0.07										
1	Ď,	EN 1	α _a DEG	i.	ā	H	i.			ı	- ti	i	Ie	i i		Į.	H	: 13		· · 6	,				6					
	ų.	APPARENT	h FT	No crater	No crater	No crater	crater	1		crate	No crater	No crater	No crater	crater	2	No crater	No crater	No crater	-		1	1						- 5		L
9		. "	13 F7	Ж	Ň	ž	No	5.0	3.1	No	×	ĕ	, ŭ	No.	4.1	ž]	N.	0.72	0.52							ļ 			
	,		da FT					2.8	1.7						0.8					1.21			0							
	SE	NO	ۍ بر														"													
	CHARGE	POSIT	Z FT	-4.00	-4.00	∞ . †	-4.00	00. 1/ -	-4.00	-4.00	₩.	-4.00	0.4-	0.4-	-4-0	-0.99	-0.98	-0.98	-3.34	-0.96										
			, (B)			<u>. '</u>	1									_'							_						<u> </u>	_
			 							_			-				140				-	نب	-				-	.,	<u> </u>	ŀ
	, v	*	LB-TNT EQUIVALENT																				i							
) 	EXPLOSIVE DATA		WEIGHT	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	:.65	2.65	2.65	2.65	0.035	ò. o3o	0:028	1.00	0.014										
	EXPLO	₹	3					```				1 = 2.65	3::)												L
		1,000	TYPE	Pentolite	Pentolite	olite	Pentolite	Pentolite	Pentolite	Pentolite	Pentolite	olite	Pentolite	Pentolite	Military C-3		60% gelatin	Gelodyn 1	Military C-3	Coalite 7-S	1							}	0 0 0 1 1 1	#
õ	Í		=	Pent	Pent	Pent	Pent	Pent	Pen	Pent	Pent	Pent	Pent	Pent	Mili	Coa	609	Gelc	Mili	Cog									L	
		SHOT	NO. NOMBER	83	8		91	84	93	₽	95	96	97	86	211	्र ह	94	55	102	155	e		,			v	, .			
	٨,	, a		52	. 25	25	гz	zz	25	25	52	25	52	52		8	Ŋ. Ŋ	R	23	22		,		U		, ,	-	r		
	-	Ç.	o,	1198	1399	0021	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210		टाटा	1213	्राडा	- 7		c	,	H _O .	,		-		H

Table 4

ts of Crater Measurements: In Ro

SOUNCE SOUNCE WEIGHT LB TANT WILLIAN MASS CHARGE WEIGHT LB TANT A PAPAKENT CRATER DIME 46 13 TYPE 12 2 6 12 12 4 12 4 12 4 12
SOUNCE, NUMBER CHARGE LIBERTOSIVE DATA CHARGE LIBERTOSIVE DATA WIT POSITION CHARGE LIBERTOSIVE DATA WIT POSITION APPARENT
SUNDARDA NATIONAL SOURCE NATA NATIONAL SOURCE NATA CHARGE NATE NATE NATE NATE NATE NATE NATE NAT
SUNTED NUMBER CHARGE NUMBER WEIGHT NUMBER WEIGHT NUMBER WEIGHT NUMBER WEIGHT NUMBER NUMBER WEIGHT NUMBER CHARGE NUMBER C
SOUNCE, NUMBER CHARGE LIGHT W. 13 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT L. 14 LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGHT CHARGE LIGH
SOUNCE SHOT STALLOSIVE CHARGE W W W W W W W W W
SOUNCE SCHOOSIVE CHARGE W W W POSTTON CHARGE FT Ac I FT FT<
SOUNCE WITTER CHARGE WATERIOR WEIGHT LB-TNT WEIGHT POSITION CHARGE WEIGHT POSITION CHARGE FT AC GIA FT
SOURCE LOSIVE CHARGE LEMINAL LA LA LA LA LA LA LA LA LA LA LA LA L
SOURCE NUMBER (LE) SHOT (LAR) CHARGE (LE) W (LE) W (LE) W (LE) POSITION (LE) 46 1.1 TWT 20 20 2.92 0.0 46 1.2 (14) TWT 20 20 2.92 0.0 46 1.3 TWT 25 25 2.92 0.0 46 1.3 TWT 27 2.92 0.0 46 1. TWT 25 25 2.92 0.0 46 1. TWT 25 2.92 0.0 0.0 46 1. TWT 25 2.92 0.0 0.0 46
SOURCE NUMBER SHOT EXPLOSIVE DATA CHARGE LB.TM M.1.3 W.1.3 CHARGE LB.TM M.1.3 CHARGE LB.TM M.1.3 CHARGE LB.TM M.1.3 M.1.3 CHARGE LB.TM M.1.3 CHARGE LB.TM M.1.3 M.1.3 CHARGE LB.TM M.1.3 M.1.3 T.TM M.1.3 CHARGE LB.TM M.1.3 M.1.3 T.TM M.1.3 CHARGE LB.TM M.1.3 M.1.3 T.TM M.1.3 M.1.3 T.TM M.1.3 M.1.3 T.TM M.1.3 M.1.3 M.1.3 M.1.3 T.TM M.1.3 <
SOURCE NUMBER EXPLOSIVE NATA CHARGE LBTINT LB TN LB LB TN LB TN LB TN LB TN LB TN LB TN LB TN LB TN LB TN LB TN LB TN LB LB TN LB LB TN LB T
SOURCE LIA SHOIT EXPLOSIVE
SOURCE SHOT LLG 114 TWT LLG 12(2A) TWT LLG 13 TWT LLG 13 TWT LLG 13 TWT LLG 1 TWT
SOURCE SHOT 146 114 116 116 116 118 146 11 146 146
08
SO TO
0

* Sumbers correspond to Ribitography numbers

Conta W 3 E LB - NT LB 3 Stors 2 2 E C 2 E 2 E E E E E E E	_	Т.	f	_			٠.	<u></u>	Ĺ		_	.8	_		_	Ë	_	_		$\overline{}$		-		· -		_			7	. [7
Semigration Explicit Sucretary Suc			cu FT	# -	8	37	ace *	85				6				165	3,199.04	3,989.06	330	2,580	1.540	1,095	10,300	8,480	16.7	14.0	1,200.76	1,030	164.65	177.24	5.27
Secondary Secondary Explication Explic		ä	αt: DEG						ater	ater	ater		ater	•						0				и						7	
Secondary Part Pa		=		"	0.4	3.1	t brok	8.4				2.4				8.43	22.68	7.91	9.70	14,4	14.0	13.4	25.2	23,1	1.2	, , , , , , , , , , , , , , , , , , ,	13.98	14.5	8,13	.6.4 ₇	2.56
SOUNCE NUMBER EXPLISAVE DATA POSTITON APPARENT POSTITON APPARENT POSTITON APPARENT POSTITON APPARENT POSTITON POSTITON APPARENT POSTITON	NSIONS		dı FT		6.0	1,6	sing /				, pp. ==	6, 0-	<u>-</u> =		. 4	417	+	3.9	5.5	5.3		_		8.7	1.1	1,1			2.38	4, 10	0.75
SOUNCE NUMBER EXPLISAVE DATA POSTITON APPARENT POSTITON APPARENT POSTITON APPARENT POSTITON APPARENT POSTITON POSTITON APPARENT POSTITON	SATER DIME		Va CU FT																					7							
SOUNCE NUMBER EXPLICATIVE DATA WEIGHT NUMBER LEATING NUMBER CHARGE NUMBER WEIGHT NUMBER CHARGE NUMBER No. 12 No.	Ö	Ι.	α ₃ DEG		0			-,, -					,					13.61											.,		
SOUNCE NUMBER SECULATION W S FX CONTINUED CHARGE NUMBER CHARGE NUMBER CHARGE NUMBER CHARGE NUMBER CHARGE NUMBER CHARGE NUMBER FT FT <t< td=""><th>1</th><td>PARE</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ĸ</td><td></td><td>.,</td><td>.,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>, j.,</td><td></td><td></td></t<>	1	PARE			-												ĸ		.,	.,									, j.,		
SOUNCE NUMBER EXPLOSIVE DATA CHARGE W W 3 EXPLOSIVE CHARGE CHA		¥	ra FT												1.2	K.		-				-						,			
SOUNCE NUMBER EXPLOSIVE DATA POST SOUNCE NUMBER EXPLOSIVE CHARGE W. W. SOUNCE NUMBER EXPLOSIVE CHARGE W. SEMERATIN TYPE 2.0 MERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN	'		da PPT	g						¢	,							,											11/2		_
SOUNCE NUMBER EXPLOSIVE DATA POST SOUNCE NUMBER EXPLOSIVE CHARGE W. W. SOUNCE NUMBER EXPLOSIVE CHARGE W. SEMERATIN TYPE 2.0 MERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN TYPE 2.0 SEMERATIN	ų.	! <u>K</u>	ر ک	Continue			,							anite	5-36	0.0		5-33	3.36	3.36	.36	36	36	36	,			5.73	.82	.84	.93
Store Stor	O A A D	POSITI	F Z	Chall's	77-77-	**0.1-	- 4.7	-5.8**	7.4-		7.01	-5.0**	-2.2**	គ	-		-4.17								-0.7	6.0-	71.4-		_		-1.88
Sequence Sequence	F		m . " "		, ,			i						[E.	6.9	6.8 [‡]		2.2		=	6.3.	=		=	" 		_	ന	=	_	1.38
SOUNCE NUMBER EXPLOSIVE TYPE	4	*							,					63	320	320				320	320	320		,				320:	05.07	100	2.52
SOUNCE NUMBER EXPLOSIVE TYPE	XPLCSIVE DAT	CHARGE	WEIGHT LB	es "	2.0	1.5	2.0	3.0	6.0	2.0		8.0			320	3,20	256c	1030	32C	320	320	320	2560	2560	6.2	4.5	:320	320	70.50	100	50.52
Sourace Nunveign 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Ι.			Type	Armonia gelatin	Type	. ~	Type	Type	Ammonia Gèlatin	Ammonia Gelatin	Ammonia Gelatin	د	TMI	ZWZ.	C-2	TNT	TALL	TINI	TAME	TINI	TINT	TNI		1	C-2	TIVI	IMI	TALL	INI
		SHOT	4UMBER					~			.,.				Ξ		-	_							a a		=				
No. No. No. No. No. No. No. No. No. No.		~ ₀ {		. 1	ੌαΟ,	œ.	. Θ	8	တ	8	.8	8	8	н о	-		:		٠,٠			-			8	8			,		
		EM	o V		1241	1242	1243	1244	1245	1246		8451	12,9	15				1253							7560	1361	1262		192	128	1266

Tatle 4 (Continued)

(3 of 12 sheets)

오 GEG R 94.01 2.86 9.24 16.2 2.50 90.9 ÷ L 7.50 5.8 1.30 1.00 3.50 0,45 8.15 1.45 2.95 1,65 6.0 ᇴᇉ va CU FT α3 DEG APPARENT 모님 _в <u>г</u> -1:09 -1.24 -1.25 -1.47 -1.48 -1.54 CHARGE POSITION -1.46 -3.20 -1.60 -2.65 -4.08 -5.33 ٥. 8 -2,18 -8.15 -5.06 ٥. 8 -3-83 -3-83 γĻ w^{1/3} LB^{1/3} 4.12 2.42 2,16 1.04 1,17 2.93 3.68 3.42 Fired LB-TNT EQUIVALENT 21.41 ध्य.धः धः.धः 1.12 70.12 50.12 1.62 25:12 0.31 4.50 215.3 6.2 0.80 14.12 0.50 1.62 2.20 2.20 30.0 18.0 75.0 8.50 10.13 40.12 0.50 50.12 250 .. 20.0 10.0 15.0 8 emigelatin Type B EXPLOSIVE TYPE SHOT ₹ 6-¥ B-14-A 1-20 G-16 -18 迼 84 8 4 -19 7-17 1-2 ITEM SOURCE

(4 of 12 sheets

Table 4 (Continued)

				EXPLOSIVE DATA	¥.			[]				STACTOR COLUMN	101010101	,		
į							4 6	CHARGE	į			- 1	MENSIGN	اي		
	SOURCE	SHOT		CHARGE	*		1	POSITION		¥	APPARENT	. 4% L			TRUE	*
			TYPE	WEIGHT	ECUIVALENT	LB ^{1′3}	Z FT	۰. ۲۰	ep .	_n }	h _a α _a	1900	ਰ	=	å	
í,						\int					_	UEG CU FI		\dashv	7	CUET
į				"	Shots F	Fired in	Granite	(Continued)	ued)	,	978	()	٠			
ş	•	A-35	2-5	2.8			÷.					F	1.85	5 4.82	હ્ય	15.7
	7	A-18	2-5	0.20			まり	.,	.,		3.	· ·	8.0	79 -		0.57
8	4	A-10	THE	1.12	1.12	1.04	-1.68	-1.62			CI§		0	╁	2	3
1237	8	1.	Semigelatin Type A	6.2			-3.0				9		3	╀	n".	3
1298	4	. 2-0	2-5	10.01		Γ	1. 5.F			11	98		1 .	+		33.0
6621	7	B-13	G-2	0.09			77.5				×5. ~2		I.70	+	1	77.88
8	4	9		۶ ا	5	3	χ.ο. 			1	9e j.		8	-	1	313.48
Ę	Γ	1	4	7.0	27.6	23	-5.01	7.1-			कर		3.65	5 6.71	г.	173.16
١	T	?		2.60	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-2.42				88		0.50	0 1.02	2	0.55
3 8	- اه		Sentgelatin Type B	4.1			-2.8	-					1.1	5.8		38.1
3 3	* '	<u>1</u>		.:15.0			-4.39			,			2.05	5 4.59		45.93
3	»	-	Gelatin Type.B	1.2			-1.9						0.8	7.4	-	13.2
<u>د</u> ا	- 1	G J		1.2			-1.9				Ç.		0.9	3.6		4.6
3 3	ρ		Įį.	19.0	.,		-4.8				ø		1.6	6.2	. "	92.49
3 3		Ī	Gelatin Type B	4.1			-2:9				3,		1,2	4.3		20.1
3 8	Т	T		1.00			-1,83						1.0	7.10	6	17.38
3 5	T	502		320	330	6.8g	-12.5	-1.83					6.1	17.1	ļ. —	2,320
3 :			tin Type	9.6			-3.9						1,6			34.6
1 5				32.0			-5.9		٥				2.0	9.0		125.0
3 6	٥	· w2		19.0			-5.1	Ì	<i>,</i> -,		- 1		1.6	11.6	í	186.0
? ?	Т	T	Type	9.6			-4.1						1,1	7.0		33.8
	T		7 0	2.00			-3.3		.,				1.25	3.54	•	16.25
1 2	. 0	=		1.50		Ī	-2.25					#	1.05	2.83	3	8.96
	Т	Ť	Sententin Type B	£.4	"		-3.5						: 0.5	5.6		3.8
3 3		T	Z	39.0	1		-6.80			Ť			3.55	8.40	_	263.44
	1		a a	3,23		94.1	-3.04	-2.08		٠.	-32-7	,	2.00	⊢	_	72.59
3 8		Ť	THE COLUMN	3.13	3.13	37.1	-	-2.08		+	-		1.65	6.54		75.18
2	٦.	<u>.</u>	2-5	10.0		٦	-4,50	=	,	-	0	-	2.50	6.27		103.55
	61.4				**				,				l	1	l	

										_												-			· ·					
	*	Vt CU FT		7.78	17.17	6.2	85.29	13.37	3-40	80.00	182.76		70.07	2,090	18.70	38.39	00.00	5.80	ace	12°0	92	76.38	2.7	13.93	2.69	11.13	7.10	25.48	42.80	11.28
	TRUE	αt DEG						,	gan.			rater							Surface		nt ri								.,	-
	. TF	1. FT		2,77	15.4	 ₩.	5.39	3.17	1.63	09.0	7.74	o og	6.08	13.2	3.77	4.60	0.17	3.48	Just brok	0.95	CRUE	6.74	2.3	3.84	2,13	3,63	2.66	04.4	5.35	89.2
NSIONS	at.	d. FT	-	0.95	0.75	9.0	2.75	1.25	02°T	52.0	2.90	<u>.</u>	1.80	9.1	1,25	1,70	0.10	0.45	Ju	8:25	Hole	1.60	0.5	0.90	0.50	∂ • 85	0.95	1.25	04. 1	1.50
CRATER DIMENSIONS		Va . CU FT				~			*	٠							,								ຄ					1)
Ö.	TN	og DEG			,						.,						,	3			-	. ,,					<u>.</u>	•=		
	APPARENT	با عَـ								,	.,							ن خ					~2 <u>0</u>	K COLFFE	,					_
	A /	1.2 F.T						,																						٠,
	-3	e T	(per													, ·	,						, ,	-"						
=	Z.	ںہ	(Continued)	-2.13	-2.20	-		,	-2.34					6h*z-				-2.70						-2.30	-					=
CHARGE	POSITIO	Z FT	Granite	-1.82		7.5	-3.56	-3-37	-4-50	-1.75	-6.80	5-5-5	-6.52	-17.0	-5.52	-4-96	-2.69	-3.73	-4.5	-1.87	-12.90	-7.08	-5.3	-7.17	-3.70	-6.52	-5.33	-6.90	-5.14	-13.50
F	,	s . E	Я	85	72				1.92		1	1		±0.0				1.38		3.0	ر دیا							,,		=
[_		s Fired	0.85	1.72	-		-	i	(6)				6			·	4			. 8			2.47			-4	_		
	3	LB-TNT EQUIVALENT	Skôts	20:00	5.13				21.7					330		**		2.63						15.12		, , ,	<i> </i>	9	# .	ļ
DATA		<i>\</i> .			9	1,	2	. 0	2	0						0	a	3	Ą	ĺ			ا ا	2	0		0	8	Ö	<u> </u>
EXPLOSIVE DATA	CHARGE		1.	0.52	5.13	6.2	3.75	3.00	टा १	0,0	23.81	4.3	20.0	320	0.01	7.00	01.10	2.63	4:3	05.30	95.0	15.0	6.2	15.12	2:00	10.0	5.30	11.38	7.00	0.0
ű	<u> </u>		-			Type A						Type B	,,						Type B		-		Type A					3	e .	
oca	1.00	XPLOSIVE TYPE	eners.	. 12.N.T	ε,	atin Ty						la							a		-		اما				<u>, , , , , , , , , , , , , , , , , , , </u>	.0	.1.	
ŀ	~	D -55°	N. Carlot	STATE .	INI	Semigelatin	c-2	Ĝ-2.º	IMI	c-5	c-5	Semigelati	ુ:-5	TAKE	Z - 3	c-s	c-2	THE	Semigelati	c-5	מ-5	Z - 2	Semigelati	TML	c-5	Z-0	Z-0	c - 5	Z-5	2-5
2	SHOT	NUMBER		A-6	A-40 3		A-38	A-33	B-2 ∶	A-1	P-17		B-19-A	टा९	†-0	B -6	A-12	A-39		A-5	C-13A	B-20		B-12	A-30	c-5	В-8	3-18	ं 1 -स	ct-2
		<u>z</u>		7 7	i 0 1	့စ	1	1	J. I	4	Į į	8	1 T	13 6) †	4	4 A	, t	60	₩ #	β t	H 1	8	I I	ط. التي	٠ ټ	H +	1	μ • •	
· "	×	3	H							, 4	e van	1000	`n.a								^	Ŀ	6							L.
L	Ę	o V	نــا	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	457	1345	1346	1.347

	20 20	;					• •	, ; <u> </u>				"	,					,		<u>.</u>	,						L.,			<u> </u>
		.vt ⁴ cú∌⊤		143.76	Bulyou	10.0	Joint .			6.53	857	3.74	- 4	ç 3°	9.59		0.02		0.01	MI	2,02	; ⁶ %	د د	0.53	. 5	₹ 1 [1	2,560	Н	15.0	32.0
	TRUE	α _t DEG	٥		rince o) [Broke veak aurface	No grater	crater) .			crater	5	crater	26	No crater	-	grater	3	crater	crater	2		,	*.			4
c		= [5,45	Slight surf	0.20	e veak	OM .	OM :-	2.77	5.30	2.55	`	Ж	2,35	2	0.59	A	0.24	율	2.33	2	Q	राग		8.3	11.2	″.	3.1	<u> </u>
SNOISNE		÷ F		1,40	HS	0.25	Brok			0.80	2.0	0.55		27.5	1.65		or to		°.3		0.35			0.40		3.9	9,1		1,2	5.6
CRATER DIMENSIONS		Va CU FT															4					,				, 100 m	7			
ľ	Ę.	α ₃ DEG			·				ű					1		,										0				
	APP ARENT	ᄚᇉ							,										.,		O				_		Ŀ			
		E T									g; 0			.,							-				-		,			
Į ^		e F	ued)						,				.,													_		-9		İ
3GE	POSITION	۰۰ ۲	(Centinued)			-3.41				-5	-3.65				-3.75			-3.98	†0.†		OI:4-		-4.45		mestone	-0.36	96.0	rlstone		
CHARGE	POSI	Z FT	Granite	8.7	-2.61	-3.54	9ħ-7-	-1.85	-7.70	-4.95	-25.0	-7.25	±6.9±	-2.88	-13.79	-11.29	-3.92	-12.38	-5.20	-7.20	-6.83	-14.29	-3.82	-18.21	Shots Fired in Limestone	-2.5	9.9-	ed in Maristone	-1.2	-2.4
. 3	:	w¹.³ ∟B¹3	fired in			10 T		:			6.84				3.68			3.11	1.29		1.67		0.86		ots Fir	6.84	6.8h	Shots Fir		=
ď.	3	LB-TNT EQUIVALENT	Shors Fired			्रा•ा	-				320				50.12			30.12	2,13		4.63	,	0.63		SE	320	320	S		o
EXPLOSIVE DATA	CHARGE	WEIGHT		3.25	94.0	21.1	10.0	0.15	0.01	2,50	250 260 370	7.50	6.50	54.0	50.12	25.0	1.0	30.12	2.13	5.50	1.63	10.0C	0.63,	26.20		320	320		J-1	3.Ľ
	,	EXPLOSIVE TYPE			٠	7 .		-	6	2				. 🕏								3 .		9 9	7.5		- A		Semigelatin Type A	Semigelatin Type A
L	L			2 - 5	2-5	THE	ი-2	C-5	2-0 0	ე-2	TAT	9-5	٦. د	2-5	Ħ	2-5	ر د-2 ت	E	T.W.T.	ر د	E	α <u>'</u> -2	TIME	ς - 5		E.I.	Ē	~	Semi	Semi
	SHOT			B-9	A-16	A-32	01-0	A-2	9-0	B-7	909	B-14	B-19	ונ-A	:C-14:	Č-11	A-31	C-15	B-1	B-15	n-u	c - 13	A-34:	MX-1-C		502	501		Ś	
·	Ç	SOURCE		, 1 1	4	4	_	4	4	1	Ĭ3	4	# 1	4 8	:4		4	.4	-1	.	. ‡,	#	्र श्रो	1		13	ξ		8	8
	- E	Ö.		1348°	1346	1350	1351	1352	1353	1354	1355	1356	1357	1358	1355	1360	1361	1362	1363	1364	1365	1366	1367	1368	_	1369	1370	"0	1371	1372

0.2 54.0 2.0 182.0 182.0 cu FT 162 5,148 810 1,460 1,020 1,820 1,440 3,530 8,650 6,880 1,518 at DEG No crater TRUE No Cr 3.82 23.37 11.6° 6.0 8.42 3.13 6.2 9.0 d d 14.3 13.1 17.5 35.6 0.61 32.6 0,3 3,4 2.5 3.0 2.7 33.1 23.3 = 1 8.8 5.8 10.5 2.0 6.5 11.0 0.1 . . 2.5 0.3 Ğ G CRATER, DIMENSIONS 7.0 1.2 1. 1.3 7,1 ð t cu FT 19.2 o. DEG 8 達世 3.4 ᇍ 9. 89. đ_a Shots Fired in Marlstone (Continued) 0.0 -0.36 98.0 9.39 -0.36 95.0 -0.36 -0.36 Shots Fired in Sandstone 96.36 9.39 99 0.0 CHARGE POSITION -3.75 0.0 17.4--4.5 0.0 0 -2.5 -2.5 -4.5 909 **₹** ٠<u>٠</u> 7.0 -2.5 -2-2 ι, O ۲.4− ₹*****0 -2.5 -2.5 иF w1/3 LB1′3 2.92 6.84 13.68 ĕ.84 6.84 ₹ 8.9 6.84 6.84 10.26 13.68 13.68 6.84 W LB-TNT EQUIVALENT 320 1,080 2,560 2,560 88 B <u>R</u> R 8g 88 88 2,560 CHARGE WEIGHT LB 13.5 э<u>.</u> 2.5 8.0 8.0 8.0 2,560 1,080 8 1,080 2,560 ß 8 8 8 8 8 怒 2,560 2,560 30,000 Semigelatin Type A Semigelatin Type A Semigelatin Type A Semigelatin Type-A Semigelatin Type A Semigelatin Type A Senigelatin Type A Semigelatin Type A Ammonia dynamite Ammonia dynamite Ammonia gelatin EXPLOSIVE : TYPE H H Ē Ħ Ħ H THE . SHOT 303 9 8 818 89 819 809 810 Ъ5 8 젊 8 9 Z TEM SOURCE æ æ œ 8 æ 8 œ ë 373 378 385 375 37 380 혅

(7 of 12 sheets)

Table 4 (Continued)

(8 of 12 sheets,

108,000 106,000 512,000 125,000 œt DEG TRUE <u>.</u> ا ت 33.11 56.5 47.11 70.5 5.65 6.92 7.10 88 0.82 9.35 1,60 5.7 5.91 89. 26.9 27.5 1,13 2 °, CRATER DIMENSIONS ₽ <u>L</u> va CU FT 24.8 588.3 128.8 145.6 α₃ DEG APPARENT 0.45 70.0 61.0 0.56 2 E T 8.42 5.14 0.9 4.92 3.46 <u>-</u> ₽ 94.4 1.30 2.3 3 8.8 da FT -0.36 9,39 -0.51 6.51 **6.7**3 -0.93 -0.95 99.39 95.0 9 7.0 -1.03 CHARGE POSITION -3.50 21.12 -3.8₽ 0.0 -2.96 -2.50 후 o. -5.38 -1.34 -2.50 6.0-6.0 6.0 7 7 CLB-TNT N1'3 2.92 26.5 2.92 6.84 1-12 4.70 ₹. 88 34.2 4.89 104.00 320,000 18 B B 10,000 40,000 40,000 ٤ 4 Я 320 104.00 2.25 8.0 8.0 **5.0**0 8.0 8,0 8.0 0.01 0.01 CHARGE WEIGHT LB 320,000 6 000,04 330 છ K) К Semigelatin Type A EXPLOS_ÎVE TYPE mmonia gelatin Gelatin Type A Ħ H Ė H SHOT A-16 A-h2 B-14 A-12 A--1 A-29 91.5 817 418 Ç-5 ਛੋ ដ ដ SOURCE

Table 4 (Continued)

8	EXPLOSIVE TYPE TYPE Semigelatin Type A C-2 C-2 C-2 Ammonia gelatin Gelatin Type A C-2 Gelatin Type A C-2 Gelatin Type A C-2	CHARGE WEIGHT E LB E C C C C C C C C C C C C C C C C C C	LB-TNT EQUIVALENT Skots F.	¥.1.8 8 .8 9 .8	POSITION			A	APPARENT	1. 1			F	اسا	
	EXPLOSIVE TYPE Semigelatin Type C-2 C-2 Ammonis gelatin Gelatin Type A C-2 C-2 Gelatin Type A C-2 C-2	ALC S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0			Ì	Ť			į				• [<u>.</u>	
	gelatin Type mia gelatin tin Type A		Shots Fire	_	, Z ,	ر ک	da F	ra F7	ha FT	α _a DEG	Va CUFT	ė į	= [αt DEG	Vt CU FT
	gelatin Type mia gelatin tin Type Å	8.0 1.25 1.25 8.0 8.0 1.50 8.0 8.0		ii	Sandstone	(Continued)	ned:)					-	9. 9	."	
	C-2 Ammonta gelatin Celatin Type Å C-2 C-2 Gelatin Type A C-2	1.25 1.25 8.0 8.0 8.0 1.50 8.0 8.0			-2-4			,*	H			3.5	5,5		100
	C-2 Ammonia gelatin Gelatin Type Å C-2 G-2 Gelatin Type A C-2	8.0 8.0 8.0 8.0 8.0 8.0 8.0	_		-2.00							1.50	3.18		15.94
	Ammonia gelatin Gelatin Type Å C-2 G-2 Gelatin Type A C-2	3.0 3.0 3.0 1.50 1.50 1.25 1.25 1.25		_	-2.00			ζ.	-			2,15	4.64		48.58
	Gelatin Type Å C-2 C-2 G-2 Gelatin Type A C-2	3.0 1.50 (3.0) 125 125 8.0	,		-2.5					¢.		2.9	6.2	"	116,
	C-2 C-2 Gelatin Type A C-2	1.50 1.50 3.0° 3.0° 3.0° 3.0° 8.0°			-2.5		9	/	_		ir.o.	3.2	5.5	_	140
	, S	1.50 (9.0° (125 °)			-2.70		."					2.50	14.87		62.16
	8	, 8.0° ,125°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°			1.51		et.	2	<u> </u>		° .	2.88	2.34		12.25
		,125			-2.7		,		.		5 0 0 c	3.2	5.7		140
		8.0	.,		-1.48				0		1	οι;τ	2.85		9.38
	Gelatin Type A	֡	,		-2.9	-1				. "	0	3.3	5.4		130
	Semigelatin Type A	8.0			-2.9				-			3.4	5.9		150
	TNT	8	9	ړ		-1.5	1.73	3.85	5.23		39.7	∞ . ₹	6.47		383.7
	TIMI	, 50	25 2	2.92	-4.5	-1.54	1.40	2.97	2.33		60.5	5.67	7.91		592.9
	Z-5	18.35		Ì	47.4					" "		3.80	10.11		107.0T
	ç-5	6.00			2.8					-		2.57	5.76		89.16
	2-5	3.00			-2.32							1.40	5.04		37.26
	C-5°	10.0			-3.50			- 11		de la		3.17	6.05	-	12.54
	ر-2	10.0			-3.50							4.57	5.70		155.16
	c - 5	10.0			-3.50				\dashv		0 4	2.32	5.15	+	6.41
	TAT	4.62	4.62	1.67	-2.22	-1.65			-	_		1.90	4.00	_	31.79
	C - 2	6.00			-3.15				-	S		2,30	6.15		91.18
# 3-10	C2	14,00			-4-30							3.45	8.92	"	226.50
1, A-35	TATE	१ ५.12	1.12	99:1	-2.87	-1.79			-:-		, (c	2.32	4.05		39.00
14 805	TMT.	320	,320	5.84	-12.5	-1.82						14.9	9.3		1,190
4 B-19	TAKE.	38.12	36.12	3.36	-6.20	1.8			ů.			5.40	6.41	<i>"</i> .	232.06
	Gelatin Type A	3.0	.,		-3.9			-			,	7.0	0.9		100
8	Semigelatin Type A	8.0			-3.9	.**	14,		•		(6.0:	7.4		100

Teble 4 (Continued)

0.73 11.13 6.22 6.50 21.81 66.43 24.91 177.21 70,37 251.81 631.5 407.4b 6,001.3 , , , , , , , 1,487 52 α₁ DEG TRUE broke 4.09 8.49 7.95 ξĿ 2.80 0.90 0,38 99.0 1.00 2.35 5.63 97. 6.55 a t 24.0 55.6 78.3 cu FT ģ α₃ DEG APP ARENT 14.0 0.50 0.27 ᇣᆸ 7.96 4.0 4.24 . \$2 - 4 卢 6,0 3.3 1.38 ф Ц Shots Fired in Sandstone (Conti -2.05 -2.47 -1:98 -2.07 -2.12 -2.19 -2.29 -2.48 -2.49 -1-97 -2.31 -2.5 -2.5 CHARGE 97.7 -3.21 -6.42 8 -3.90 -1.84 -2.38 -5-31 -2.50 -2:56 -4.15 -1.58 -4.50 -1.92 -3.50 -3.53 -5.75 -11.6 -2.41 -4.8 -5.0 -6.ö 7-4-7 4.9 z FT 2.03 5.85 2.92 1,88 0.87 1. 104 2.30 2.60 2.32 1.67 W LB-TNT EQLIVALENT 8.38 6.62 17,62 0.65 24.1 ÷.62 टा टा 2.75 12.75 œ" ß g 8,38 01.I 6.50 17.62 0.50 6.62 1.56 1.42 3.28 3.00 4.62 0.65 2.75 टा टा 1.20 12.75 CHARGE WEIGHT LB 21.0 0.01 8.0 8.0 8 Ю Semigelatin Type EXPLOSIVE TYPE Gelatin Type A TAL SHOT NUMBER A-19 A-48 A-40 A 4-47: A-44 A-45 B-17 A-43 A-21 ф. 6 ď ITEM SOURCE

of 12 sheets)

१९ व्या ३० च्य

_	,				EXPLOSIVE DATA	ΓA		CHARGE	3SE	•			ង	CRATER DIMENSIONS	ENSIONS			,
_	TEM	SOLIRCE	SHOT	, i	CHARGE	3	ď	POSI	NOIL		٧.	APPARENT	LN	ā		F.Q	ß. TRUE ⊗	
	o Z		NUMBER		WEIGHT LB	EQUIVALENT	, °	Z FT	تې	da F	e F	F	α 3 DEG	va CU FT	후 L	= [α _ί DEG	v cu FT
لـــا						Shots Fr.	Fired in S	Sandstone	e (Continued	nueā)			<u> </u>	ļ. -				
	9 9	.7	A-13	2-5	0.38	-		-1.84		L		<u> </u>	\vdash		0:50	1.80		1.T
. 31	1491	4	- - - - - - -	2-5	20.01			-5.50					-		1.8	4.82		46.28
. 1	2841	. 84	, I	TINI	52	25	2.92	-7.5	-2.57	04°Q	1.07	0.43	-	9.45	9.15	12.17		2,327
	1483	4	B-1	3-5	6.00		ų	4.75					-	·	2.00	3.46		25.12
> ====	1891	4	4−49	ú−2 . c	4.50			-4.85							0.68	1.12		0.83
• 1	11.85	148	4	TML	75	. 75	4.22	०.ध	-2,84	ь. 8	0.54	1.26		0.81	8 21 8	16.34		5,905.7
71	98	4	c-7	TINI	8.12	8.12	2.01	-5.80	-2.88						0.80	1.88		2.98
	1,87	4	C-13	C-2	70.00			12.27					-		5.72	13.02		1,015.74
	887	.#	B-16	TINI	10.62	:: 10.62	5.19	- 6,62	-3.02					 	2.28	3.69		32.59
			8-30	2-5	12.00			-6.91		ų.			ļ		2.30	5.23		63.00
_		4 , ₹	C-5	C-2	10.0			95-9-			Ĺ		-			13 OE	CRiter	
<u>п</u> ,		<u></u>	7	TMI	25	25	26.5	0.6-	-3.08	0.0	0.0	0.83	ļ _	0.0	10.70	13.19	.,,	3,076.1
<u>71</u>	1492	\Box	1-4	C-2	0.11			-6.85						- ·	60.65	2.04		±6.0°
<u> </u>	1493	8		Ammonia gelatin	8.0			9-9-			il B	, T	į,		0.8	2.0		7
<u>1</u>	1611	.=	C-16	č-2	6.00			LT*9-			1	engr	_		0.80	12.01		3.37
 	1495	8		Gristin Type A	8.0			-6.8	. 1		iant;	1.00			J.	Just brok	surface	ace
]	1496	8	<i>,</i>	Semigelatin Type A	8.0		,Š	-6.8			41 * 22	:27 e g g			Ju	Just broke	surface	ace
	7647	80		Gelatin Type A	8.0			6-9-			ince	TAPEL C	ο,			NO CE	crater	
<u> </u>	8647	80		Semigelatin Type A	9.0°			-6.9			<u>~~</u>	prv	7.2		J.	Just broke	súrface	ace 5
<u>.</u>	1499	₽ .	2	TINIL	a)	8	. 2	0-7-	-3.5	0.0	0.0	0.23		0.0	8.60	3.12		35.4
<u> </u>	→.	4	B-15	TINT	6.75	6.75	1.89	-6.75	-3.57		erece.			,		No cr	crater	
-1	100		в	TIMIL	25	25	2.92	-10.5	-3.60	0.0	0.0	0.37		0.0	11.98	9.52		1,209
<u>-1</u>	1502		88	TINI	320	320	6.34	-25.0	-3.6£	,	£			:		IN C	crater	ે સે,
71	1503	77.	다	TMT	33.62	33.62	3.23	-11.95	-3.70				~,		5.75	2.61	"	¥.2
<u> </u>	150	. =	‡. b	C-2	35.0			-12.62	197		ji Ji		# 8 / %		1,65	1.92		6.38
21	1505	e)	-	Semigelatin Type A	8.0			8.6-					_			No ca	crater	
لت	1506	æ		Gelatin Type A	8.0			6-6-			¢	113	_			No crater	ater	

	, ,* ,	16		EXPLOSIVE DATA	٧		CHARGE	3GE	•••			CRATE	CRATER DIMENSIONS	SIONS			8
TEM	SOURCE		رمري	CHARGE	≉	r	POSITION	LION		Y	APPARENT	_	-		F.	TRUE	6.
o N		NUMBER		WEIGHT	LB-TNT EQUIVALENT	æ [B]	, ⊥∃ , E⊤	٧	da FT	ra FT	ha FT DE	α _a v _a DEG CUFT	E F	÷F.	= [α; DEG	v. CU FiT
		8			Shots Fi	Fired in	Sandstone	e (Continue	nuec.)		_	,		T			,
1507	8		Gelatin Type A	8.0			6.6-			4		ļ			No crater	ster	
1508	8		g.	A 8.0			6.6-				<u> </u>				No crater	ater	
1509	. 8		Ammonia gelatin	0.8.0			-10.5				-				No CE	crater	
	. *	5			63	Shots Fi	red in	Shale		,,				-			
1510	1,7	4	TNT 3	25	25	2.92	0.0	0.0	1.50	4.28	0.48	37	37.8	2.10	5.72		39.6
1511	74	13	IMI	25	25	2.92	0.0	0.0	1.80	3.68	0.39	38.9	_	2.50	5.10		917
टाडा	747	77	TANT	50	50	3.68	0.0	0.0	3.1	7.5	,,	236		3.5	8.8	å	375
1513	7.4	15	TAT	50	50	3.68	0.0	0.0	3.8	8.8				4.2	9.1	3	
1514	7.4	.16	TAIL	50	. 20	3.68	-0.6	-0.16	2.6	7.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	176		3.0	9-2	· ··.	270
1515	2 11	7	T.N.I.	" co		a	-1.0	-0.5	1.85	7.00	0.28	0.74		3.17	5.05		143
1516	147	6	TKT	જ	25	2.92	-1.5	-0.51	2.65	6.38	0.73	. 168	3	5.10	7.35		302∂
1517	747	4	TALL	8	8	Q	-2.0	-1.0	2.00	5.12	0.25	82.9		3.88	5.38		157
1518		٣	TALL	σ,	9	2	-3.0	-1.5	2.38	5.88	0.25	38.1		4.50	6.25		136
1519	7.7	2	TALL	., 23	25	2.92	-4-5	-1.5¢	4.55	9.82	0.69	570.5		7.88	9.86		949.3
1,520	7.7	9	TNI	25	25	2.92	-4.5	-1.54	3.25	9.50	0.85	108		6.80	10.38		802
1521	747	8	TML	ec 	£	α	0.4-	-2.0	2.55	6.18	0.40	138		5.40	7.60		373
1522	147	п	TIMI	500	200	5.85	-12.0	-2.05	1.30	12.92	2.08	1,253		15.50	17.62	>	8,413
1523	147	9	TMT	8 8	9	2	-5.0	-2.5	1.70	5.8	0.63	76.1		6.15	6.32		332
1.524	747	7	TMI	25	25	2.32	-7.5	-2.57	1.50	6.25	0.78	122		10.75	8.00	ığ	1,056
1525	17	21	TANE	75	75	4.22	-12.0	-2.84	2,35	9.95	1.58	1,81		-	13.00		
1526	1.7	ω.	Trit	ဖ	Э	Ŋ	-6.0	-3.0	2.85	6.10	0.73	182		5-65	7.78		161
1527	47	5	TALL	ထ	(1)	(U-	-7.0	-3.5 =	1.20	4.12	0.83	. 28.1	_	7.95	5.60	-	316
		**	es Arrick	44.			, :	-									
											-	_		-			
,:-			~=V;}									40				-	
	y. 	.,					,					*** ***					
											-					_	,
										1					١	١	

Table 5

Results of Crater Measurements in Ice

				0	-					ਰ			.,		Ü		Γ		Ì	· · ·				. 0	Γ			Ė	Г	Ţ
		v. CU FT							۸						.				. .											
	TRUE	α. DEG					. ?														Γ.									
75 W	F	- L		Л.		. "					,							;			Г.	-								
SNOS	3 43%	F	,				;							<u> </u>												-	,			
CRATER DIMENSIONS	82	Va CUFT	₹-15°	36.05	63.61	155.29	49.59	¥.53	261.86	109.52	91.96	17.81	64.35	.FO. 99	149.76	° 124.95 °	18.14	82.02	141.78	J47.07	202.93	63.65	£ 271.68	339.09	80.26	203.42	17.74	193:31	₹50.0 5	
<u>o</u>	ENT	α _a DEG	SI.						-								-			على		÷:_•	,,				,		~ :	
	APPARENT	ج 1 -)							ц		3.5				.,	o	v				
	∢	ra F7	3.51	3.06	4.29	2.67	1,08	4.22	₩.9	5.56	5.14	2.73	4.17	74.4	5:25	5.08	3.37		8.4	90.4	5.70	4.15	7.15	7:24	26.4	7.21	2.56	6.31	3.45	·
ņ		da FT	0.23	0.23	09.τ	2.28	1.90	91.0	2.63	1.63	1.90	0.95	1.35	1.85	2.20	1:90	1.00	1.45	3.00	89.0	59:2	1.81	26.5	4.93	2.05	2.20	1.00	2.56	1.00	
SE	NO.	نې																						,		-	v		.,	
CHAR	POSITION	z FŢ	0.0	0.0	0.0	0.03	-0.21	-0.23	-0.38	-0.32	-0.35	±ô.23	-0.32	†††.0-	-0.54	-0.55	-0.38	-0-40	64.0-	-0.46	-0.62	-0.51	-0.65	-0.83	-0.72	-0.93	-0.148	-1.01	4.0.	,
_		· · ·	<u> </u>	_									1				_					_			_		-	_	,, ,	1
		. LB.	-								, o					ij	-				-									,
¥	×	LB-TNT EQUIVALENT							li.	-								ŗ					**							
EXPLOSIVE DATA	CHARGE	≈ wejGH† LB	5.0	5.0	0.01	20.0	o-15	5.0	20.02	10.0	10.0	2.5	5.0	10.0	50.0	50.0	5.0	5.0	10.0	5.0 3	20.0	5.0 1	10.01	50.0	0.01	20.0	2.5	20.0	2:5=	
	: unit	EXPLUSIVE TYPE	t-5	1-D	Atlas 60	% - 1 - D	Atlas 60 😤	C−4	,		Atlas 60	Coalite 5-S %	Coalite 5.8 :		Complite 5-S	Coalite 745	Coalite 5-S	Atles 60	Coalite 7-S	C-1	Atlas 60	Coalite 5-S	c-1	C−1,	Coalite 5-S	Coalite 5-S	Coalite 5-S	Coalite 7-8	Coalite 5-S	
	SHOT	Мимвек	170	170R	Ϋ́	ୃଷ	108 = 1	17014	23	17	107	æ	9	91	52	8	9	79	65 °	170,1/2	700	79	1 6′	151	7.4	53			38	
	i Caro		51	.51	53	51,	16-	51	51	. 51	51.	51	51.	51 ,	1.51	17	51	51.	, גל	51	51	15.	51/8	7.E.	51	51	51.	, 51,	. 51	
-	Σ.	Š.	1528	1523	1530	1531	1532	1533	1534	1535	1536	1537	1538	1533	1510	1,541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	

* Numbers correspond to Bibliography numbers.

Table 5 (Continued)

(2 of .4

G. DEG يَّا سِيْ CRATER DIMENSION 218.93 260.33 280.03 245.67 21,411 175.66 26.38 187.69 97.60 370.60 115.93 99.074 30.11 106.04 141.93 224.32 396.19 51**7.**0\$ 155.70 503.82 76.96 108.35 81.81 143.34 69.01 58.21 222.60 Va CU FT a JEG APPARENT ha FT 5.45 6.87 6.23 1.61 4.97 11.9 4.59 5.07 3.48 2.82 2.60 3.00 2.20 3.9g 2,44; 3.32 1.92 2.72 3.56 †L.+ 3.77 2.15 1.95 2.91 4.62 2,13 2.15 1.55 2.0 3.2 da FT CHARGE POSITION -1.30 -1.53 -1.36 -1.72 -1.82 -2.92 -2,06 -2.74 -0.92 1.73 -1.8 -1.51 41.09 -2.21 -2.37 -1,65 -2.31 -3.69 ÷0.88 -1.04 -1.74 다. 타 -1.27 -2.94 .t- % -2.48 7 7 w. 3 W LB-TNT EQUIVALENT EXPLOSIVE DATA CHARGE WEIGHT LB 10.0 10.01 800 10.0 2.5 5.0 10.0 80.0 5.0 10.C 20.0 2.0 20.0 80 8 0. 2.5 5.0 5.0 5.0 5,60 2:5 EXPLOSIVE TYPE Comilte 5-8 Coalite 7-S Coalite 5-S Comlite 5-S Coelite 5-S Coalite 5-8 Comilte 5-8 Comlite 7-S Coalite 5-8 Coalite 5-S Coalite 5-S Coalite 5-S Atlas 60 Atlas 60 Atlas 60 Atlas 60 7 170 3/4 NUMBER . 13

	1			EXPLOSIVE DATA	, , , , , , , , , , , , , , , , , , ,		CHARGE	SGE		,		G.	CRATER DIMENSIONS	SNOIS			u
ITEM	2	SHOT		CHARGE	3	7.3.4 [POSI	NOI		4	A PP ARENT	1			Ε.	TRUE	
Ö	F 5-19	NUMBER S	TYPE	WEIGHT!	LENT	¥ 9 1 	Z	, L	da F7	ľa FT	ha (α _{Ř.} DEG	va : cu FT :	- 14 - 19	-4- -11	במן במן	Vt CUFT
1584	. 51	25.8	1 -0	20.0	3	<i>3</i>	-4.05		5.85	8.57		H	719.31	, ,			
ξ	12	950	Atlas 60	: 20.0			-4.05		5.45	8.01			505.33		:		1,1
38 86 17 18	12	. 89	Comlite 5-S	10.0			-3.39		41.4	6.98			285.55				
123	.13	83	Coelite 7-S	20.0	,,	1	-4-33		5.40	10.13	H	Н	877.04	5 7 9			
1588 88	2	М	Atlas 60	2.5			-2.36		2.51	5.18%			71.901				
<u>\$</u>	2	33	Conlite 5-8	2.5			-2.52		2.77	3.80	//		52.94				,
1590	្ម	ф 3	Comilte 5-S	5.0		Î	-3,48		3.76	5.07			123,16	į			,
1591	4	۴	70	5.0	'n		-3.73	ora.	4.93	2.00		\dashv	157.36	»			
1592	4	. 92	Atlas 60	5.0			-3.80		p.70	6.57	 1	\dashv	276.96			.:	H
1593	13	%	†-5	20.0			×-6.07		7.57	9.34			944:60				
±251	4	ঠে	Comite 5-S	5.0			.>-3.84		4.39	6.08			275.73				i)
1595	13.51	8-96	Atlas 60	20.0			£6.15	4	8	7.77		· 	642.17	, i.i.,			, ,
128	4	115	Atlas 60	10.0			-4.93		5.60	7.59			495.15	•			
1597	4	r S	Atlas 60	40.0	ļ	Ī	-8.10	1	10.10	11.04	.3		2181.70				
158	3	ş	7-5	10.0	,		8.5		6.10	7.10			148.74				:
1599	7	٤	Coglite 5-5	2.5			-3.₩		3.90	4.93		u.	175.52				
897	15	ບ		2.5			-3.61		1,02	6.71	9.5		192.02	,			
1601	겁	97	Atilas 60	20.0%	й и	Tig.	-7.46		20.00	9.17	-> '		1180.15		3.		ş
209 190	ť	027	Committe 7-S	10.0			9-9-		7.18	10.07			1055.88		.s=		
Ş	12	7	Comitte 5-S	5.0			7.88		5.30	6.62			315.99				
ថ្មី	12	ያ	Complite 5-8	0.01			-6,13	-	6.15	8-555			680.56				
1605	נג	56	Coelite 5-S	20.0			-7.73	٠	8.80	9.85	ਰ	.,	20,4411		,		
9 9 9	נג	ਛੋ	Complite 7-S	20.0			-7.80		8.90	9.89			1333.16				
1091	ᅜ	88	Committe 7-S	2,5	"		60.4		4, 4c	6.24			181.18	<i>μ</i>			
1909	נג	27	1-0	20:0			-8.18	,	99.66	9.56			1201,81	,			
188	ŭ	8	ţ	2.5			-4.20	4.	4.85	5.90			240.95				
019 197	12	و	†-0 °	5.0		í	-5,34	4	6.14	6.15		o	365.66			``	÷
1611	51	34	Comlite 5-S	2.5			-4.38	0.	2.75	4,27			62.85	-		ديه	Ŏ.

Table 5 (Concluded,

				EXPLOSIVE DATA	\ \ \	[100	19			"	5	CRATER DIMENSIONS	SIONS		Ì	
	c	Fores	.]				POSITION	NO.			APPARENT		2		F	TRIF	
o Q	SOURCE	NUMBER	EXPLOSIVE TYPE	CHARGE WEIGHT	" LB-TNT EQUIVALENT	W1/3	Z 1.3	۰,	da FT	r.	ت <u>ت</u>		v _a cu FT	t L	= [:	ar DEG	vt CU FT
दाश	ц	155	† 2.	70.0			19.17		11.90	12.55	T	1	1620.99				_
1613	5.1	69	Coalite 5-S	10.0	-,		ਰ-7-		8.36	6.37			192.90	000			
1614	51	86	4tlas 60	20.0	o		8.95		9.50	12.21	प्		1682.38				°
5191	51	1	t5	5.0		6	-5.66		0	6.38	,	-		-			
9191	я	13	°C−4	10.C			-7.33		5.65	7.45		 :-	538.76				٠,
1617	51 ⁰⁰⁰	了。您	t-5	20.0			-9.33	. 		10.36			-				
1618	ונ		Atlas 60	2.5			† ∠ -†-		5.05	6.15	.,	-	165.96		1		, ,
197	.51	102	Atlas 60	0.04	1	:3	-12.16		12.10	13.51		-	1874-83		ij	ō	
1620	51.3	311	Atlas 60	10.0	-		-7.65		8.70	8.95			917.63				
1621	. 51	. 8	Coalite 7-S	5.0	-		-4.89		5.20	29.9		".X	338.37				
8 91	51	U .	Atlas 60	2.5			あ. す		5.13			- `					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1623	. 51	100	Atlas 60	20.0			-10.10		11:20	92.6		<u>'''</u> ا	1944.29	2-		7	_
7 7 7 7 7	51	74	Atlas 60	5.0			69.9-		7.50	8.36			19:46	-		<i>"</i>	
<u>1</u> 685	5,1	ी गर	າ. † ນ	10.0			-8.59		. "	96-9		-			"		7,
762 1626	51	45	Coalite 5-S	5.0	<i>#</i>		96.9								,		
1627	5, 1,	35	Coalite 5-S	2.5			-5-					-			<i>"</i> .	S	
1628	זל	: 7	, †-5	. 2.5			-5.97		<u>،</u>			ļ,					
689	51	88.	Atlas 60	20.0			-12.01		4.85	9.8I				1 2 4	3		
1630	51 ':	. 98	Coalite 7-S	10.0		6	-9.74		10.80					<u>-</u>			
1631	줐	В	Atlas 60	2.5			-6.20		6.39	"		ļ	-				
1632	- 1	72	Atlas 60	10.0		9.5	-9.92			4.L		L	700.22				
1633	52	29	†-5	20.0			- १५.५४	, ,	,								
163 t	Z.	5	t-0	5.0		y.	-8.22						==		ci	,	,
1635	17	156	न्य	40.0	,	٠.	-16.95										
9691	51	ŭ	Atlas 60	2.5			-6.80		7.10	9.58		-	÷.				2-
1637	51	101	Atlag 60	20.0			74.41-								,		
869 91	51	103	Atlas 60	10.0			-18.67						 				45
1639	. 12	Щ	Atlas 60	2.5			-7.58	*	2 66	2.92			bt. 76				

Ĺ								ſ			Ì	ľ						r
		_		EXPLUSIVE UALA	٧		CHA.	CHARGE				5	CRATER DIMENSIONS	SIONS	į			٦
TEN	1000	SHOT	i	CHARGE ⊕	 		POSI	NOI		*	APP ARENT	F		-		TRUE		
Ģ Ž		NUMBER	TYPE	WEIGHT LB	ECUIV ECUIV		Z FT	۲۰	da. F	- L	<u> </u>	α _a DEG	va Cu`FT	₽ L	<u>- L</u>	at DEG	×r CU FT	۰
1640	61	0-1	40% gelatin	0.452			0.00		1.00	1.96			٥		e z			
1641	19	01-5	TALL	0.50	0.50	0.794	0.00	0.00	1.42	3.00		<i>3</i>					: :	
1642	19	02-5	TAKI	0.50	0.50	1,67.0	0.0	00.00	1.75	2.67					*1		-	
1643	19	0-2	40% gelatin	° 406-0			00.00		1-33	2.75								
1644	19	o-1	TINE	1.0	1.0	1.0	0.00	0.0	3.50	2.92	-	-			-			
1645	19	0-3	40% gelatin	1.356	+		0,00		1.75	2.67			,			, ,		·
1646	19	0-15	TAYE	1.5	1.5	1.145	0.00	00.0	1.92	2.79	-		,					
1647	19	†-0	40% gelatin	1-808			0.00		2.03	3.50	1 1		il ·					
1648	61	ુ ટ-૦	TIMI	2.0	2.0	1,26	0.00	0.00	2.00	2.96								
1649	. 61	9	40% gelatin	2.7.2			00.0	9	1,92	3.29	.,	-			в.			
1650	 88	1:5	(i)	8.0	8.c	2.0	-2.00	-1.00	3.60	5.80			391	, 	v.As			_
1651	38	2	TINE	8.0	: 8.c	2.0	-2.00	-1.00	3.50	6.70		315	Ż.	 		L	o ·	
1652	38	3 .	TIME	8.0	8.0	2.0	-2.00	-1.00	3.40	5.50			185				(= . : .	٠.
1653	19	39 <u>-</u> 62	40% gelatin	2.712			-1.67	40,	2.83	94.4					,,,		II. C	,,,
1654	eq.	1-02 02	40% gelatin	1:808			-1.67	F	2.83	4-33		11						- C
1655	19	20-15	TMT	1.5	1.5	1.145	-1.67	-1.45	2.25	4.00		-			·	*		,
1656	19	20-3	40% gelatin	1.356			-1.67	٠]	2.33	4.16	-						٥	
1651	19	25-21	TORE	2.0	2.0	1.26	-2.08	-1.65	2.25	4.25				dis-			,	
1658	19	25-22	TIMIT	2.0	2.0	1.26	-2.08	-1.65	2.08	3.96								
1659	19	20-2	40% geletin	406.0	,		-1.67		1.83	3.62			:		6			
1660	19	21-12	THAT	1.0	1.0	1.0	-1.75	7.1	1.75	3.25		-		6	ů			Ò
1991	19	35-11	THE	1:0	1.0	0.1	-2.08	-2.08	1.83	2,96		o				_		
1662	. 61	25-12) . Init	1.0	1.0	1.0	-2.08	-2.08	1.92	3.29		, e					;	
1663	19	25-13	TAXI	1.0	1.0	1.0	-2.08	-2.08	2.00	3.12		. ,						
1991	19	20-05 0-05	TATE	60.5	0.5	0.794	-1.67	-2.10	7.17	2,83		٠	-				^	
1665	19	20-1	40% gelatin	0.452		"	-1.67	j j	1.08	2.92		_	21				,,	
7 666	91,	9-04	40% gelatin	€/ 2.712			-3.33	÷	1.58	4.50	`		# 				6	
1991	19	, †-0 †	40% gelatin	1.808			-3.33		1.50	3.58						::	,	
₹.	mbers o	orrespor	Numbers correspond to Bibliography numbers.	mbers.	 1	·		ş••		a								_ a

Table 6 (Continued)

Ŀ						Ī		ľ			١				۱		
<u>.</u>				EXPLOSIVE DATA	_		CHA	CHARGE			"	ซื	CRATER DIMENSIONS	NOISN		"	
C.	SOURCE	SHOT		CHARGE	*	F/1	POSI	NOIL		IV	APPARENT	TN				TRUE	
2		NUMBER	i	WEIGHT	LB-TNT EQUIVALENT	F, 187	2	ο _γ	d.	st	- L	α,a DEG	Va CUFT	₹ [= 1	at DEG	۲. 19
1668	61 8	40-3	40% gelatin	1.356			-3.33		1.25	3.16		-				Ľ.	
997	61	41-15	THE	1.5	1.5	1.145	-3.42	-2.98	1.67	3.21		\vdash				Ĺ	,,,
1670	ρ Ω	7-94	THE	0.50	2.0	1.26	-3.84	-3.04	1.33	3.29	ļ -					_	0
	7	-Q-1		1.0	1.0	1.0	-3.33	-3.33	1.25	2.54	-						
	53 23	32-5	TRT);	0.5	0.5	467.0	-2.67	-3:36	1.92	2.5		1					
_	3	40-2	40% gelatin	0.90th	9). 43		-3-33		c.83	2.67	7		લુ		¥**		
1 57	£ 12	33-5	TATE	.0.5	0.5	167.0	-2.75	-3.46	0.92	2.79		-				/	B
	2	98	40% gelatin	2.72	Ì.		-5.00		1.00	3.62				Ĩ			
1676	£ 62	3	40% gelatin	1.808		- 5.	5.00	·	1.00	2.79		-	9	0		_	
1291	25	2,09	THE	2,0	2.0	1.26	-5.17	or.4-	1.25	2,46		1 11			·	ļ	
1678	13 8	101	hof gelatin	0.452	0		-3-33		0.92	יעינ						. "	
<u>§</u>	2	60-15		1.5	1.5	1.145	-5.00	-4.36	1.50	1.79		-				_	
	2	42-5		0.5	0.5	0.79t	-3.50	14.4-	0.83	2.38		-		101 1			
_	위		40% gelatin	1.356			-5.00		0.92	3.00				. ?	-11	_	_04
89	2	78-6	hos gelatin	2.712			-6.50		1.25	2.66						_	1
	છ	57-1)	1.0	1.0	1.0	-4.75	4.7	1.33	2.00				374	5.513		:
8	61	58-1	9	1.0	1.0	7.0	±.83	-4.83	1.50	1.50		 	"		L	=	52.24
168	13		THE	= 1.5	1.5	1.145	-5.83	-5.10	4.58	1.75			£. 5	15			
° 1686	β 9	2-09	40% gelatin	40.00			-5.00		2.00	1.5		المارا		Š	6		P
1991	81	63-1	TIME	1.0	1.0	1.0	-5.25	-5.25		0.67							co
889	2 2	81-2	THE	2.0	2.0	1.26	-6.75	-5.36	2.83	1.21		<u> </u>	-	ē		} <i></i>	-
	8	7 8	40% gelatin	1.808			-6.67		0.92	2.17	7.		v	15			
<u>§</u>	8	7-1	THE	0.4	1.0 %	1.0	-5.67	-5.67		0.62	,			î	*		
<u>1</u>	13	80-15	TATE	1.5	1.5	1.145	-6.67	-5.82		1.16		₹ .	,,,				
2697	2	Ę	·	1.0	1.0	1.0	-5.83	5.83		0.62		,	100				
1693	2	8	TMT	2.0	2.0	1.26	-7.50	-5.95	3.00	96.0	-		. 6				
ঙ্গু	27	8	hos gelatin	1.356	, .		-6.67		0.17	05.0		,					.,
	S S	57-5	Trict	0.5	0.5	0.794	-4.75	-5.98		0.50		ff		. ^			15

·

Table 6 (Concluded)

(3 of 3 sheets)

~2<u>.</u> åt DEG <u>پہ</u> ۲ va CU FT α_a DEG APPARENT ha FT 1.08 ,∞•τ 0.33 94.0 0.0 0.77 0.54 0.58 ~ F 3.92 0.58 25.92 0.17 2.08 0.17 3.95 -e.L -6.09 e-6.48 -6.61 -6.62 -7.08 -8.94 CHARGE POSITION -7.08 -4.83 -7.42 -6.00 -4.83 -8.33 -5.25 -6.67 -7.83 -7.67 19.9--7.08 0.794 1.145 0.794 467.0 ₽67.0 o d LB-TNT: EQUIVALENT 2.0 1.0 0.5 ... CHARGE WEIGHT LB 1.808° 0.904 1.356 1.0 0.90t₁ 0.452 0.452 2.0 0.5 EXPLOSIVE TYPE 1,0% gelatin 40% gelatin 4c% gelatin :40% gelatin 40% gelatin 40% gelatin 40% galatin TIME TNT THE INI H TML SHOT 89-15 80-2 100-2 1001 6-46 85-1 92-2 8 302-6 58-1 72-5 6 8 2

Table 7

Properties of Clays

	Panama Utah,	⊃I 	50 5	3-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5			 	Lean clay Clay (CH or CL)	58.2			73 76.9	110	13.4	,		3000	6
ea	WES INSTRUCED	CLAY	‡ <u>-</u>		66	28.	8	Lean clay	.37	13		88	901	, k. 20.13%	3		1120	
Area	NES YES	CI CI	, e)^*) 0	86 7	25	, E.T.	Lean clay	143	, . 82	<i>©</i>	97.:	117	20.8			,	
	Camp Cooke, California, Wet Clay		. 2-12				, 100 mg/s	silty clay	(GF)	10	2.66	100	124	24.3	رن د ال		п 	
	Dugway, Utah,	90	, , - , -	y .			Modifier to	lear clay		, 61	2.75	39.0	9.911	31.5	# ₁₁		2000	
4		Source	Depth range of samples, ft	Mechanical analysis, % finer than	0.05 mm 0.05 mm	0 01 mm 0 0 005 mm	Classification	مي ا	Avg liquid limit	Avg plasticity index	Avg specific gravity	Avg field dry weight, lb/cu ft	Avg field wet weight, lb/cu ft	Avg field moisture, %	Approximate water table depth, ft	Avg angle of internal friction, deg	Avg seismic velocity, fps	

Table 8

Properties of Sands

C.3.					6 8
	0		Area		
	Dugway, Utah,	Camp Cooke, California,	WES Interface	Yucca Flats	WES Interface Dry-to-Moist
	wet Sand	Wet Sand	wet band	Sand-Grave	Sand
Source		56	į, įth	92,	1
Depth range of samples, ft	0-100	2-20	0-0.625	0-185	, <u>12</u> .5
Mechanical analysis, & finer than					~ ~
No. 10		100		2	n _w
No. 60	\ \ 8 7	0 4 2 4		, 22 40 40	
No. 200	25	" j rv		, Air	** - 9**
Classification	Silty dune	Silty sand	River sand	Sand-granel	River sand
,	sand	(SP-SM)	., u	mix	
Avg plasticity index	NP .	. NP	NP	NP	NP
Avg specific gravity	2.67	2.64	e.,	2.56	
Avg field dry, weight, lb/cu ft	6.76		. 26		96.5
Avg field wet weight, lb/cu=ft	100.7	120	. 3.89.2	84.5	103
Avg field moisture, %	m	Above WT-22	11.8		9.9
Approximate water table depth, ft	150	ผ	,,	1000	
Avg angle of internal friction, deg	35		 	617	
Avg field plate bearing, lb/sq ft	· ·	,		5000 at 2 ft	
Avg sersmic velocity, fps	1500	· · · · · · · · · · · · · · · · · · ·		3000	1250
			,	9	
	0		4	o,	

Table 9

Properties of WES Loess and Silt, and Keweenaw Frozen Silt

		Amoo	6
	WES Test.	יייייייייייייייייייייייייייייייייייייי	
	Site Loess	Natûral ;	Reveenaw Silt Blast Hole 184
Source	· 66		· 8
Depth range of samples. It			
	?	9-0	~
Mechanical analysis, % finer than		•	,
0.05 mm (0.0)	96	86	*(************************************
0,005 mm	8 8	32	
Classification	Loess	Sandvisilt	*
. Avg liquid limit	, α ((),		TTS Annoc
Avg plasticity index	 H &	34•°(7)	, , , , , , , , , , , , , , , , , , ,
Ave specific months.	C.	(•)	
ATABLE OF THE PROPERTY OF THE	й •	bismer man at	2.63
Avg field dry weight, lb per cu ft.	95	88.38	78.9
Avg field wet weight, lb per cu ft	113	114	106
Avg field foisture content, %	19.0	28.86	34.1
Avg angle of internal friction, deg		\$	-u o
G			2 C C C C C C C C C C C C C C C C C C C

Table 10 Granite, Marlstone, Properties of Chalk,

			Area		
	Niobrara Chalk	Lithonia	Unaweep Granite	Green River Warlstone	Kanawha Sandstone
Source	80	8	13	8	r 00
Description	Chalky limestone	Gneissic	Fine to very coarse grained	Kerogenaceous, dolomitic lime- stone (oil shale)	Coarse grained
Apparent specific gravity	2.0	2.6	2.68	2.1	2.2
Tensile strength, psi	· ·	1,50	009		70.
Compressive strength, psi	2,000	30,000	24,800	000,000	10,000
Tensile bearing strain, in./in.		280			200
Modulus of rupture, psi	300	5,000	2,510	6 00t att.	007
Sclenoscope kardness	, oʻt	85	· san &	547	30
Elastic constants (dynamic methods) Young's modulus, psi Modulus of rigidity, psi	0.75 × 10 ⁶ 0.5 × 10 ⁶	3.0 × 10 ⁶ 1.5 × 10 ⁶	4.37 × 10 ⁶ 2.44 × 10 ⁶	1.2 × 106 2.5 × 106	1.0 × 10 0.5 × 106
Longitudinal bar velocity, fps	5,000	6, 0 00	10,800	000,9	2,000
Longitudinal field velocity, fps	7,500	18,500	•	,13,000	5,000
Torsional velocity, fps	£		8,190		e कें
			1475A	Party Party 1	N Section of

APPENDIX A: ADDITIONAL CRATERING DATA

1. Since the completion of the draft of this report, additional cratering data have been received. These data are included herein and constitute, along with the main body of this report, all cratering data available at this time. The data presented in table Al were extracted from the reports listed as references Al* and A2 in the "Source" column of table Al.

Properties of the Various Media Cratered

Suffield Experimental Station (SES), Ralston, Alberta (reference A2)

2. Shots were fired at the SES in two areas, the Watching Hill Range and the Drowning Ford Flats Range. The surface conditions at these two sites are virtually identical. Approximately 80 per cent of all tested material was in the silt range, that is, finer than the No. 200 sieve.

"Samples from the topmost layers had moisture contents ranging from 2 to 3 percent to ardund 20 percent, and densities in the range 73-110 lb/cu. ft. The unconfined compressive strength was on the average about 10 tons/sq. ft. and the shear strength ranged from 0 up to a maximum of 14 tons/sq. ft. The percentage recovery after a compressive load of 1000 psi ranged from 5 percent to 18 percent."A2

3. When the position of the charge center of gravity was not given, it was computed from knowledge of the charge shape and weight, and by assuming a packing density of 90 lb per cu ft. Some of the charges used were various types of bombs. In computing the actual weight of explosive contained in a bomb, one-half of the total weight was assumed to be explosive.

Railroad Vulnerabilitý Program (reference Al)

4. The shots fired in the Railroad Vulnerability Program were detonated at Fort Eustis, Virginia. The soil consisted mainly of sandy silt except for the 378-lb charges which were fired in a soil consisting primarily of clay.

^{*} Refer to corresponding numbers in list of references at end of appendix

"Soil samples were taken throughout the test area to determine soil properties relevant to the test objectives. The soil parameters measured included grain-size distribution, Atterberg limits (liquid and plastic), cohesive strength and angle of internal friction, density, and moisture content.

"Most of the soil encountered was classified as sand or sandy silt. In general, the soils with the higher percentages of clay were found near the surface. Both the strength tests and the Attenberg indices indicated cohesive strengths ranging from 0 psi in the sands to 20 psi in the soils with higher clay contents."Al

References

- Al. Case Institute of Technology, <u>Railroad Vulnerability Program</u> (SECRET). Technical Memorandum No. 21, University Circle, Cleveland, Ohio, August 1958.
- A2. Jones, G. H. S., Spackman, N., and Winfield, F. H., Cratering by Ground Burst TNT at Suffield Experimental Station, Ralston, Alberta (UNCLASSIFIED). Suffield Technical Paper No. 158, August 1959.

Γ	H	٦			Ϊ	ļ	Γ"		<u></u>	51			" ,B	_					[,,									1			
		""	et Cu FT				, , , , , , , , , , , , , , , , , , ,	" ?	0			o				\$.		9,0													
		TRUE	αι DEG		1							; ;-	2						0 ^			5		_	11	ļ	,			L	
		F.	= E		<i>)</i>			- μ		ļ.,					W.									-10	l ii.						
V V	2	"	91.8°		-	,		··						-		; ;	-	1				9	-			ê.				3.4	
NEW	MERC	اد		q	<u> </u>		<u>_</u>	<u> </u>	٠,		 		_	_			ن		<u> </u>			<u> </u>				_			_	_	7
CRATED DIMENSIONS	ער בי		Va CU FT								8		23	-		=-7	. 4	J		·(" "]	ć					 - -	(A		-	
1	1	ż	α ₃ DEG	ا ر		-		-	-		7	ૈ)	 -::	ध्य	B						1.	13	420	**		> 0		79	.,	
		APPARENT	all to			27	"										1					-	ļ	پهرد	isto Ge	0 0	med	1.3	Ç		
	TIVE TO SERVICE THE PARTY OF TH	¥	FT, O	,,,,	0.8	0.9	8.0	80	0.8	0.8	0.8	0.0	9:0	. 2.0	2.4	2.3	2.4	2.2	-t -t	2.0	1.9	1:8	6:1	1.9 :	No.	6.4	a obtained	2.0	3.5.	,6°0,3	1
			da FT		2.0	5.7	2.0	3.8-	2.0	2.0	9.6	0.3	0.5	0.5	1.4	1.5	1.4	1.6	1.6	1.3	1.5	1.8	1.7	1.5	1.7	1.9	No data	1.5	1.9	7.1	
	_		۰. ۲۰	Silt	40.14	+0.14	+0.14	#T-0+	±1.0+	+0.14:	+C:24	+0.14	+0.14	+0.14	+0,14	+0.14	+C-14	+0.14 +0.14	±0.14	+C.0+	+0.14	+0.14	47.8-	+0.14	+5.24,	구. 구 구. 구	41.0+	क् ृंं-0∸	†T-0+	+0-14	
	CHARGE	POSITI	Z FT	Fired in S	+0.28	+0.28		+0.28	+0.28	+0.28	+0.28	+0.28	+0.28	+0.28	+0.54	+0.54	+0.54	±, 0+	4.0+	+0.54	去: 2+	45-5+	+3:54	太守	45.54	ik ç	±5.5¢	+0.54	+1.77	+1.27	
F	T	, n	1 3	Shots Fin											3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3,9	누	3-9 +	+ 1 100	+ \ \tag{7.01}	i
	}		_=_	Szc		2	CA	2	a	. 62	2	2		2	<u>س</u>		<u></u>	E.	3	3	3	3	- m	3	3	L'n	(")	~	97	음	
		š	LB-TAT EQUIVALENT		a)	Э	Ф	ക	დ	a)	ຜິ	ന	w,	9 5	60	: 09"	39	35	Ç	3	. 59 i	09	3	\$ 90° \$	ည	ξĞ	હ	€ .		1 1 1 1	
PATA	5																			-	<u> </u>				_		: "			-	-
EXPLOSIVE DATA	1 1 1	CHARGE	WEIGHT LB		8	မ	. ω.	8	ω	ω.	က က		B	. ω.	9	9	8	60	: 65	. éc	6C	39	9	. 60	9	G 62	95°	900	24017	2,245	
۱	ì -								"				1											,,				_		۰	1
			TYPE	B	f:	f	TITE	1	, .I.A	Ę.	Ę	Ę.	Ę	Ę.	Ę	ij	Ę	LL.	Ę,	Ę	Ę	T.	TNT	, IA	E:	TMT:	Trât.	ritr	TAIL	11	
		a X i	} }		L.E.	TIL	Ħ	TIT	LAL	É	E	TATE	Á	Till		G.	F	TNT.	É	Ħ	F	E	E	Ē	Tim	EI.	(A)	ξ. 	E .	Tran	ļ
F	1		œ ·	.,		ű		ا ا					_	4		_	4	4					v.	1					<u> </u>	_	Ì
	; ;	SHOT	NUMBE		, 1	~	m	ا و. ا	R.	9	<u>ن</u> ن		io	भ	크	52	£#.	177	4.5	94,	7	T)	6	ιK.	2	17 17	, E	°. 73	63*+		-
	٠. =	ITEM SOURCE			A2	22.	A2	:A2	, 0A2	A2	A.S.	AZ	, A2	AZ	AE.	A2	. A2	A2 o	42	° A	.A2	A2 65	A2 .	A2	ASS	A.2	A2	A2	4.2	A2.	Ĺ
		»Ψ ç	9		377.5	777	3.275	1713	1714	1715	377	1717	1718	1719	17g	.721	1722	1723	457.5	1725	1726	2.727	1728	1729	1730	1731	1732	1733	1734	1735	

umbers correspond to Appendix A reference

Shot detonated on surface of dec

Al (Continued

EXPLOSIVE CHARGE W WITH TYPE CHARGE WEIGHT ECUIVALENT LB! 3 CHARGE PART WITH Shorts Place 1 10.23 continued to the continued				,				(•							" H						- }	<i>}</i>	·		";				_	" .
The control of the	9		Vt.º CU FT		=:ñ					0			·		1	9	,	1 1	,			fi S		j .				ç	2 2		
TYPE WE CHANCE DATA WITH WITH WITH WE CHANCE WE CHAN		Ä	αt DEG				4		en	#==		, inter-				ń.											(Sees)		٠,	o .	
Table Charles Charle		±	ار 197	*					- "				. · · II		٥	10			•				2.5			- element	۰	-			,
EXPLICATIVE CHARGE W W 13 F 14 CAST F F F F DEGRIPM F F F DEGRIPM F F F F DEGRIPM F F F F DEGRIPM F F F F F DEGRIPM F F F F F DEGRIPM F F F F DEGRIPM F F F F DEGRIPM F F F F F DEGRIPM F F F F DEGRIPM F F F F F F F F F	SIONS		# LE	ï.		-							,		5.8						, E	9					 			,	;
Charge Day Charge W W Structure Charge Char	RATER DIMEN	/	va cu⊧FT≃ ∷		, 1 °		٠	-		, m. m.			5								6 .	éjin •		÷	, s	த	,	d)		· z	
EXPLOSIVE W W 3 Fig. CHARGE W W 1 FIT CHARGE W W 3 Fig. Ac FIT FIT CHARGE W W 3 Fig. Ac FIT FIT CHARGE FIT FIT CHARGE FIT FIT FIT CHARGE FIT	, '	ENT	aa DEG	1		ż		7									<i>"</i>				·					,				,	
EXPLOSIVE W W S CHARGE W CHARGE W CHARGE CHARG	٥	PPAR	h _a FT	:: #					· F	#39				0.2	1.1	0.4	0.3	0.5	0.5											J.	
EXPLOSIVE WEIGHT WI WI STATE POSITION FT FT WI STATE WI STA			ra FT	· H	1.6	2.0	1:6	1.6	1.5	1.6	1.5	1.6	, 1.6	¿.9	6.2	5.8	5.8	6.1	9.9	1.0	1.30	0.9	0.9	0.9	0.7	9.6	2.0	8.0	0.8	1.1	1.2
EXPLOSIVE DATA CHARGE W W W W W W W W W			da FŢ	ed)	2.2	2.0	2.7	2.2	2.2	2.3	3.0		2.6	3.43	4.8	3.26	3.0	3.8	3.7	1.5		1.7	1.5	1.6	7.2	1.3	τ•τ.	,9°T	5-1	6.0	9*0
EXPLOSIVE DATA CHARGE W W W W W W W W W	3E	N O	، ^پ رد	Continu	+0.07	+0.07	+0.07	+0.04	+0.07	70.0+	+0.07	+0.07	+0.07	+0 ₂ 07	<u> 40-07</u>	+0.07	+0.07	+0.07	+0-07	+0:0¢	÷0.06	+0.06	90.0+	+0.06	+0.06	40.0€	90.0+	+ث.06	90°C+	0	&
EXPLOSIVE DATA	CHAR	POSIT	Z FT级,	$Sil\dot{E}$	-	_			_	-		+0.23	+0.23	<u>``</u>	- 11		~ 1		+0.62	\dashv	+0.12	+0.12	\dashv	+0'.12:	+0.12	+9.12	-	+6:12	+0,12	,	. 0
EXPLOSIVE CHARGE # EXPLOSIVE DATA CHARGE # EAUIVALENT Shots Shots Structure Struc		6/1				_							_	_	8.0	=		-	=		2					2				2 ح	2
EXPLOSIVE TYPE TWT TWT TWT TWT TWT TWT TWT TWT TWT TW	4				30		30.	30	35	30	30	30.	30	. 52C	512	ı	523	552	900			ψ 	ω	8	u)	-	8	,	9	III :I I	. 6 .
EXPLOSIVE TYPE TWT TWT TWT TWT TWT TWT TWT TWT TWT TW	EXPLOSIVE DAT	CHARGE		١		30	30	30			30	30	30.	520	512	521	523	5%	. 600	- 1	80	80	ຍ	8	٬ 8	B).	8	93	, 8		8
	° 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		c	TWL	c	TML	TIVE	TME	TIT	TIT	TML	TAL	TML	TMI	TAT		Traff	TNI	TWIL	TANL	LINII	TML	TML	in IMI	Trail	TAL		TWL		TMT
Stort Number 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		SHOT	LUMBER		32	. 33	34	35	36	. 37	98	38,	0.04	88	62	29	99	ð	65	21 :	, RI	-g	†7₹	25 6	56	27.	28	۲.	30		12
SOURCE A 2 A 2 A 2 A 2 A 3 A 3 A 4 2 A		יי קרול מיוס		٠٠٠	A2 .	A2	AZ	* A2s	Å2	, AZ*	A2	A2º	Ā2;	:.*A2	A2	A2	A2°	Α̈́Σ	A2		. A2	, A2	, FA	A2	A2 .	* A2 ?	. SA	A2	A2		, W2
1738 1738 1738 1738 1738 1738 1738 1738	,,,,,	TEM	ON.	- 45		_	1739	1740	1,41	1742				1746	1747	71 <u>7</u> 7	1749	175	1721	1752		1757	1755	٤٢٥٠	1514	1755	1759	1760		1762	1763

Table AI (Continued)

T LB-TNT W'3 Z Ac da fa	ν ₂ dt ν ₂
WEIGHT LB-TNT WITS Z A. o da 16a ha ca Va	2 >
WEIGHT LB-TNT WINS Z AC da ifa ha ca	
WEIGHT LB-TNT W/3 Z AC	e t
E CUIVALENT LB 12 FT 2	e F
WEIGHT LB-TNT LB EQUIVALENT	z λc
weight	
[#	
a	И.,
NUMBER	3 [

Table Al (Concluded)

,		<u>e</u>	# "	۵-	n		2			"~ ;	M		. 6	,				in the	est.		'3,	<u> </u>	13.0		٠,,				O		
.,			<u> </u>	"	Ţ"					_	Γ.	Г	<u>;</u>	<u>"</u>		<u>.</u>	<i>~</i>		-	900		93	Q.1	- - - - - - - - - - - - - - - - - - -			Τ	. "		re .	\overrightarrow{A}
	æ		Z Z			100				١,			6							-		El:	in a	2 2 2 3	-				"	٠	
		(4.5°)	V CU FT	₹		١.	-	·	ິ. ທີ		****	i merena						=	,.		- ::			"			"	-			
	.70	Ē.	α DEG	†-	T			-	80			-		T	-	Г	-				-				20	<u>-</u>	<u> </u>			3	
		TRÜE		+	-	 	- V	_	13		1		-	Τ.	\vdash		-	'n	-		\vdash		, G	5 · ·	/3		H	,		П	H
	e.		- I		, ,	L	ļ.,	#: -		Ĺ			L				_		10	_		Ŀ	_	_	-		_				- }
,	CRATER DIMENSIONS		₽ F		13	, v.,	ts -			30.	0	.,			Chip _{co}			5/11							٥,		160		o		
	MENS	-	<u> </u>	╁	 	-	┾	<u> </u>		_	-	<u> </u>	<u> </u>	-		<u> </u>	_	784	<u> </u>	ű.			<u> </u>	_	5	-		.23		\vdash	4
>	10 W		Va U				·".		3	"		"			-				.;*	27				ų						٠ ۵	
	RATE	~u.	8								c				,				n ,			. `			0		 		:.	'69	
	Ö	F	.α _a DEG		-	-							,	1	-	3.0	i.		.,	,				7	**************************************	5	3		٠,		u
.		APPARENT	د ا	-	-	-	3 77		w ·			-	-	ii'	ļ	×	-55g	-	£	-2-	,	Š.			(S)	13	12		П		7
ĺ	0	¥.	,		-	1	ω		N	8	6	0	100	Q.	2	6	Q.	·	┝		المرتد				_					\vdash	\dashv
	ġ,		-20-1		Ω.	21	157	14.7	12.2	11.8	15.9		20.02	21.2	20.5	18.9	:19.2								Ľ.			ü			
1	"	.22	-6° F	tinned)	17	6.2	1.0	6.5	6.2	7,0	7.8	e	6.9	8.8	1.11	7.8	C*-5	"		. ~	"					, 23		34			syller S
	_			‡ #	<u>Ļ</u>	Ļ	<u> </u>		10	10	<i>(</i> 2)		<u> </u>	 V0			Щ	_	_		<u> </u>			###=		==			9 "		=
,,	3E	z O	٧٠	t.(Gon	1.24	-1.24	-1.24	-1.25	-1:25	-1.25	-1.35	Clay	-0.62	-1.16	-1.18	-1.20	-1.24				N.			' . 	.,		10				ļ
	CHARGE	CSIT		15	-	Τ.			-	-		ri.					Н		Г			2 (10)			-			ļ. 15.1	الإستد	,j.	7
	O	Ω.	27	Sandy	1.7	ဆို	0.8-2	.a* (C)	4-5-4	-5.4	6.9	Fired	-4-5	-9.T	? <u>-</u> 6.5	-8.7	9.6			"						ų	.//	" 	P	100	
	Ī	,	, 'm	្រុ	2,73	6.46	9+9	4.33	4.33	4.83	9:1	Shors F	7.23	7.23	.23	7.23	7.23					e.				6			\Box		ヿ゙
			<u>, "</u>	75.es	ď	vi	9	, .	7		6.	भूद	7.	7.	7	7	7.	0						\exists				_	Щ	-"	4
	"		LB-TNT EQUIVALENT	STATE OF					ı						<i>"</i>				٠	. 1				c3				٠.			1
i	(N	` ₹	B-TN	屬	į,	275	27.	꼆	θ, ΕΙ	6	273		373	378	375	378	378											j)r		."	- 1
	ij	11	~ 없.						IJ		1			٥						,		-						/			
	EXPLOSIVE DATA	nă.	¥EIGHT ∰ LB		· .		o		อ			C															7		,,		7
ı	SiVE	ARG	LB	-	读	275	276	ត	31	31	270	Ì	182	37€	378	378	373) . 1 - 12 m	W.		3	7-		n			3		
Ì	Ž	₹5	.≱	1						N						`		*>		1;46.* 				٠٠.			"				ĺ
	Ш	- <u>.</u>		,,,	200	Ŀ	,		-			1		_				7,	_			9	Ť	b	1	_				οĐ	┨
		Į	الد ≥					1		" 1	"	.,	<i>y</i>	i					" O		-		Ì	W				,		. {	
		Č	EXPLOSIVE TYPE	و ر د	THI	日	THE	THE	TILL	THE	Ē		TILL	TNI	T _e	TMT	LNE		"0	~		,:*		0	'	, "	٠,			. [
1		ì	ž		ŀ			<u>.</u> .			`		Ì			10									·				-		١
l		_	, .	_			., %	_			eşi.	: 				Ш					·			4				ĵ	<u> </u>	_	ⅎ
	ا المنا	SHOT	MBE		28	4:4	61	39‡	Ľţ	631	#61=	,	59	ŧ	\$ 1	105 105 105 105 105 105 105 105 105 105	Š		4					. "		1				-	-
'n	-:	ή V	<u> </u>	-	v.	-					-	_	-		1	$\vec{-}$	-	-	\dashv	P.			+		ď		0,,		//	-4	,
		ر چ	000		AL	F	Al	T.	AL	AZ C	A1	-	AL	Ā	A1	₹	Ā	٠ ,				٠		-		30		4			ľ
		TEN	2		1790	1791	1792	1793	130	1795	138		T67.	1798	1799	8	1901							1		93			_		<i>3</i> 0
ı		. ``	Salata.	-	ت	_~		MI			1		<u>51</u>	_=1	-11	<u>.</u> =1	-d	ابم	_	.0				الا	`` {;	لې ج	<i>\</i>		-	41	ب

Whimension affected by boundary condition not included in calculation of crater radius.

Reproduced

Armed Services Technical Information Agency

ARLINGTON HALL STATION; ARLINGTON 12 VIRGINIA

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY COBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNGLASSIFIED